Кто придумал Рычаг - Когда Изобрели? Простые механизмы: рычаг, равновесие сил на рычаге.

Кто придумал Рычаг - Когда Изобрели? Простые механизмы: рычаг, равновесие сил на рычаге.

На данном уроке, тема которого: «Простые механизмы» мы поговорим о механизмах, которые помогают нам в работе. На стройках, на производстве, на отдыхе - везде мы нуждаемся в помощи. Такими помощниками выступают рычаги. Сегодня мы о них и поговорим, а также решим задачу и разберем несколько самых простых примеров из жизни.

На данном уроке речь пойдет о простых механизмах.

Простые механизмы - это устройства, с помощью которых работа совершается только за счет механической энергии. Нас окружают устройства, работающие за счет электроэнергии (см. рис. 1), за счет энергии сгорания топлива, но не всегда так было.

Рис. 1. Чайник, работающий за счет электроэнергии

Раньше всю работу можно было выполнить фактически руками, или с помощью животных, за счет ветра или течения воды (мельницы), то есть за счет механической энергии (см. рис. 2).


Рис. 2. Давние простые механизмы

И помогают в этом, облегчают выполнение работы, простые механизмы.

Наши силы ограничены, и это проблема. Мы, например, не можем за один раз поднять и перенести с одного места на другое тонну кирпичей. Зато мы можем потратить больше времени, пройти большее расстояние туда-сюда и перенести кирпичи по четыре за один подход, или сколько сможем унести. Как быть с шурупом, который нужно вкрутить в дерево? Вкрутить его голыми руками мы не можем. Вкрутить его по кусочку, как гору кирпичей по кирпичику, тоже нельзя. Нужно использовать механизм, отвертку. С ней нам приходится прокрутить шуруп на несколько оборотов, чтобы он вошёл в дерево хотя бы на сантиметр. Но зато это несравненно легче, чем руками.

Рассмотрим такой простой механизм, как, например, лопата. Конечно, она облегчает выполнение работы, с ней намного легче копать землю, чем руками. Мы воткнули лопату в землю. Чтобы поднять ком земли, нужно надавить на черенок. Где вы будете давить, чтобы было легче? Опыт подсказывает, что надо надавить, то есть приложить силу, поближе к концу черенка (см. рис. 3).

Рис. 3. Выбор точки приложения силы

Попробуйте приложить силу ближе к полотну лопаты, поднять ком земли станет намного тяжелее. Прикладывая прежнюю силу, вы уже ничего не поднимете. Именно поэтому лопаты с коротким черенком, например саперные, делаются с маленьким полотном: много земли с коротким черенком все равно не поднимешь.

Лопата представляет собой рычаг. Рычаг - это твердое тело, имеющее неподвижную ось вращения (чаще всего это точка опоры или подвеса). На него действуют силы, которые стремятся повернуть его вокруг оси вращения. У лопаты ось вращения - это точка опоры на верхнем краю ямки (см. рис. 4).

Рис. 4. Ось вращения лопаты

На полотно лопаты с некоторой силой действует комок земли, который мы поднимаем, а на черенок, с меньшей силой, - наши руки (см. рис. 5).

Рис. 5. Действие сил

Рассмотрим другой пример: все катались на качелях-балансире (см. рис. 6).

Рис. 6. Качели-балансир

Это тоже рычаг: есть неподвижная ось вращения, вокруг которой качели вращаются под действием сил тяжести детей.

Чтобы перевесить своего друга, сидящего на противоположном сидении, поднять его, вы сядете на самый край качели. Если сядете ближе к опоре качели, можете не перевесить. Тогда нужно на ваше место посадить кого-то взрослого и тяжелого (см. рис. 7).

Рис. 7. Приложенная сила должна быть больше, чем на краю

В такой точке приложения силы нужна большая сила, чем когда сила прикладывалась к краю качели (см. рис. 8).

Рис. 8. Приложение сил

Как вы уже заметили, чем дальше от точки опоры мы приложим силу, тем меньшая нужна сила для совершения одной и той же работы. Причем сила нужна во столько же раз меньшая, во сколько раз больше плечо рычага. Плечо рычага - это расстояние от точки опоры или подвеса рычага до точки приложения силы (см. рис. 9).

Рис. 9. Плечо рычага и сила

Силы будем прикладывать перпендикулярно рычагу.

Направление силы, действующей на рычаг

В каком направлении вы будете действовать на лопату, чтобы поднять землю? Вы приложите силу к лопате так, чтобы она оборачивалась вокруг точки опоры, то есть перпендикулярно черенку (см. рис. 10).

Если вы будете действовать вдоль черенка, землю это не поднимет, вы разве что вытащите лопату из земли или воткнете ее глубже. Если вы будете давить на черенок под углом, силу можно представить как сумму двух сил: вы давите перпендикулярно черенку и одновременно толкаете или тащите вдоль черенка (см. рис. 11).

Рис. 11. Действие силы вдоль черенка

Вращать лопату будет только перпендикулярная составляющая.

Итак, у нас есть рычаг и две силы, которые на него действуют: вес груза и сила, которую мы прикладываем, чтобы этот груз поднять. Мы выявили, что чем больше плечо рычага, тем меньше нужна сила, чтобы уравновесить рычаг. Причем во сколько раз больше плечо рычага, во столько раз меньше сила. Математически это можно записать в виде пропорции:

При этом неважно, приложены силы по разные стороны от точки опоры или по одну сторону. В первом случае рычаг назвали рычагом первого рода (см. рис. 12), а во втором - рычагом второго рода (см. рис. 13).

Рис. 12. Рычаг первого рода

Рис. 13. Рычаг второго рода

Работа с лопатой

Мы рассмотрели, как лопата позволяет нам легче копать землю. Она опирается на край образовавшейся ямки в земле, это будет осью ее вращения. Вес земли приложен к короткому плечу рычага, мы руками прикладываем силу к длинному плечу рычага (см. рис. 14).

Рис. 14. Приложение сил к лопате

Причем во сколько раз отличаются плечи рычага, во столько же раз отличаются силы, приложенные к этим плечам.

Итак, мы приподняли ком земли, но дальше нужно взять лопату двумя руками, поднять ее полностью и перенести землю. Где мы возьмемся за черенок лопаты второй рукой? Всё просто, когда мы уже знаем принцип работы рычага. Вторая рука станет новой опорой рычага. Она должна быть расположена так, чтобы снова дать выигрыш в силе, она должна снова разделить рычаг на короткое и длинное плечи. Поэтому мы возьмем лопату как можно ближе к полотну лопаты. Попробуйте поднять лопату, взявшись обеими руками за край - у вас может ничего не получиться даже с пустой лопатой.

Принцип, по которому работает рычаг, используется очень часто. Например, плоскогубцы - рычаг первого рода (см. рис. 15). Мы действуем на ручки плоскогубцев с силой , а плоскогубцы действуют на кусок проволоки, трубку или гайку с силой , по модулю намного большей, чем . Во столько раз большей, во сколько раз больше:

Рис. 15. Пример рычага первого рода

Еще один рычаг - консервный нож, только теперь точки приложения находятся по одну сторону от точки опоры О. И снова мы прикладываем к ручке силу , а лезвие открывалки действует на жесть консервной банки с намного большей по модулю силой (см. рис. 16).

Рис. 16. Пример рычага второго рода

Во сколько раз больше, чем ? Во столько же, во сколько раз больше, чем :

Выигрыш в силе можно получить огромный, мы ограничены разве что длиной рычага и его прочностью.

Рассчитаем, какой длины должен быть рычаг, чтобы с его помощью хрупкая девушка массой 50 кг смогла приподнять автомобиль массой 1500 кг, надавив на рычаг всем своим весом. Точку опоры рычага разместим так, чтобы короткое плечо рычага было равно 1 м (см. рис. 17).

Рис. 17. Рисунок к задаче

В задаче описан рычаг (см. рис. 18).

Рис. 18. Условие задачи 1

Мы знаем, во сколько раз выигрыш в силе дает рычаг:

Силы прикладываются по разные стороны от опоры рычага, поэтому два плеча рычага в сумме составят его длину:

Мы описали математически процесс, заданный в условии. В нашем случае сила , действующая на плечо , - это вес автомобиля , а сила , действующая на плечо , - вес девушки .

Теперь осталось только решить уравнения и найти ответ.

Из первого уравнения найдем плечо .Бόльшая сила приложена к меньшему плечу рычага, значит - это и есть короткое плечо, равное 1 м.

Длина рычага равна:

Ответ: 31 м.

Как лопата копает сама?

Рассматривая примеры, мы не учитывали силу тяжести, действующую на рычаг.

Представьте, что мы воткнули лопату неглубоко в землю. Если лопата достаточно тяжелая, небольшую массу земли она сможет поднять без нашей помощи, нам даже не нужно будет прикладывать к черенку никакую силу. Лопата повернется вокруг оси вращения под действием сил тяжести, действующей на черенок лопаты (см. рис. 19).

Рис. 19. Поворачивание лопаты вокруг своей оси

Однако чаще всего вес рычага пренебрежимо мал по сравнению с силами, которые на него действуют, поэтому в нашей модели мы считаем рычаг невесомым.

На примере девушки и автомобиля мы увидели, что с помощью рычага можно выполнить такую работу, которую без рычага мы бы никогда не выполнили. С помощью рычага можно было бы сдвинуть даже Землю, о чем говорил Архимед (см. рис. 20).

Рис. 20. Предположение Архимеда

Проблема в том, что рычаг не на что опереть, нет подходящей точки опоры. И вы, конечно, представляете, какой невообразимой длины должен быть такой рычаг, ведь масса Земли равна 5974 миллиарда миллиардов тонн.

Слишком всё хорошо получается: мы можем почти неограниченно уменьшать силу, необходимую для выполнения работы. Должен быть подвох, иначе с рычагом наши возможности были бы безграничны. В чем подвох?

Используя рычаг, мы прикладываем меньшую силу, но при этом совершаем большее перемещение (см. рис. 21).

Рис. 21. Перемещение увеличивается

Мы передвинули черенок лопаты на вытянутую руку, но подняли землю всего на несколько сантиметров. Архимед, если бы всё-таки нашел точку опоры, за всю свою жизнь не успел бы повернуть свой рычаг так, чтобы сдвинуть Землю. Чем меньшую силу мы прикладываем, тем большее перемещение совершаем. А произведение силы на перемещение, то есть работа, остается постоянным. То есть рычаг дает выигрыш в силе, но проигрыш в перемещении, или наоборот.

Рычаги, которые используются «наоборот»

Не всегда рычаги используются для того, чтобы совершать работу, прикладывая меньшую силу. Иногда важно выиграть в перемещении, даже если при этом приходится прикладывать бόльшую силу. Так делает рыбак, которому нужно вытащить рыбу, переместить ее на большое расстояние. При этом он использует удочку как рычаг, прикладывая силу к ее короткому плечу (см. рис. 22).

Рис. 22. Использование удочки

Рычагом является и наша рука. Мышцы руки сокращаются, и рука сгибается в локте. При этом она может поднять какой-нибудь груз, совершить работу. При этом на кости предплечья действуют с некоторыми силами мышцы и груз (см. рис. 23).

Рис. 23. Наша рука - рычаг

Ось вращения предплечья - локтевой сустав. Из таких рычагов состоит весь наш опорно-двигательный аппарат. И сам термин «плечо рычага» назван так по аналогии с плечом одного из рычагов в нашем теле - руки.

Мышцы так устроены, что они при сокращении не могут укорачиваться на те полметра, на которые нам нужно поднять, например, чашку с чаем. Нужно выиграть в перемещении, поэтому мышцы крепятся ближе к суставу, к меньшему плечу рычага. При этом нужно приложить бόльшую силу, но для мышц это не проблема.

Рычаг - не единственный простой механизм, который облегчает нам выполнение работы.

Каким простым механизмом вы пользуетесь, когда поднимаетесь на первый этаж? Можно допрыгнуть до окна, если получится, и просто вскарабкаться в комнату. Мы привыкли совершать ту же работу по перемещению себя домой намного безопаснее и легче - поднимаясь по лестнице. Так мы проделываем больший путь, но прикладываем к себе меньшую силу. Если мы сделаем длинную пологую лестницу, подниматься станет еще легче, будем идти почти как по ровной поверхности, но путь проделать придется бόльший (см. рис. 24).

Рис. 24. Пологая лестница

Наклонная плоскость является простым механизмом. Всегда легче не поднимать что-то тяжелое, а втащить его под уклон.

Рассмотрим, как топор раскалывает древесину. Его лезвие заостренное и расширяется ближе к основанию, и чем глубже клин топора вгоняется в древесину, тем шире она раздается и в итоге раскалывается (см. рис. 25).

Рис. 25. Рубка дров

Принцип действия клина тот же, что и для наклонной плоскости. Чтобы раздвинуть части древесины на сантиметр, нужно было бы приложить огромную силу. К клину достаточно приложить меньшую силу, правда, придется совершить большее перемещение вглубь древесины.

По тому же принципу наклонной плоскости работают и винты. Присмотримся к шурупу: бороздка вдоль шурупа представляет собой наклонную плоскость, только обернутую вокруг стержня шурупа (см. рис. 26).

Рис. 26. Наклонная плоскость шурупа

И мы также без особых усилий вгоняем шуруп на нужную нам глубину. При этом, как обычно, проигрываем в перемещении: нужно сделать много оборотов шурупа, чтобы вогнать его на пару сантиметров. В любом случае это лучше, чем раздвинуть древесину и вставить туда шуруп.

Когда мы вкручиваем шуруп отверткой, мы еще больше облегчаем себе работу: отвертка представляет собой рычаг. Смотрите: сила, с которой на жало отвертки действует шуруп, приложена к меньшему плечу рычага, а мы своей рукой действуем на большее плечо (см. рис. 27).

Рис. 27. Принцип работы отвертки

Рукоятка отвертки толще, чем жало. Если бы у отвертки были ручки, как у штопора, выигрыш в силе был бы еще больше.

Мы так часто пользуемся простыми механизмами, что даже не замечаем этого. Возьмем обычную дверь. Сможете назвать три случая использования простого механизма в работе двери?

Обратите внимание, где находится ручка. Она всегда находится у края двери, подальше от петель (см. рис. 28).

Рис. 28. Местоположение ручки на двери

Попробуйте открыть или закрыть дверь, надавив на нее поближе к петлям, будет трудно. Дверь представляет собой рычаг, и чтобы для открытия двери было достаточно как можно меньшей силы, плечо этой силы должно быть как можно больше.

Присмотримся к самой ручке. Если бы она представляла собой голую ось, открыть дверь было бы трудно. Ручка увеличивает плечо, к которому приложена сила, и мы, прикладывая меньшую силу, открываем дверь (см. рис. 29).

Рис. 29. Ручка двери

Присмотримся к форме ключа. Думаю, вы сможете ответить, зачем их делают с широкими головками. А почему петли, на которых дверь держится, расположены не рядом друг с другом, а приблизительно на четверть высоты от краев двери? Вспомните, как мы брали лопату, когда поднимали ее - здесь тот же принцип. А еще можно обратить внимание на срезанный под углом язычок замка, на шурупы, которыми дверь прикручена к петлям (см. рис. 30).

Рис. 30. Петли двери

Как видите, простые механизмы лежат в основе всевозможных устройств - от двери и топора до подъемного крана. Мы используем их неосознанно, когда выбираем, например, где взяться за ветку, чтобы наклонить ее. Сама природа при создании человека использовала простые механизмы, когда создавала нашу опорно-двигательную систему или зубы с их клиновидной формой. И если вы будете внимательны, вы заметите еще множество примеров того, как простые механизмы облегчают выполнение механической работы, и сможете их использовать еще более эффективно.

На этом наш урок окончен, спасибо за внимание!

Список литературы

  1. Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. - 2-е издание, передел. - X.: Веста: Издательство «Ранок», 2005. - 464 с.
  2. Перышкин А.В. Физика: Учебник 7 класс. - М.: 2006. - 192 с.
  1. Virtuallab.by ().
  2. School.xvatit.com ().
  3. Лена24.рф ().
  4. Fizika.ru ().

Домашнее задание

  1. Что такое рычаг? Дайте определение.
  2. Какие примеры рычагов вы знаете?
  3. Длина меньшего плеча рычага 5 см, большего 30 см. На меньшее плечо действует сила 12 Н. Какую силу надо приложить к большему плечу, чтобы уравновесить рычаг?

«Первые шаги в науку»

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа с углубленным изучением отдельных предметов №32 г.о.Самара

Секция: Физика

Тема: «Сила есть! Ума не надо?»

Абрамов Данила,

ученик 4 Б класса

МБОУ СОШ № 32

г.о. Самара

Руководитель работы

Зиберт Галина Ивановна,

учитель начальных классов

г.Самара, 2015

Оглавление

I . Введение ……………………………………………………………………..3

II . Основная часть. Рычаг и его разновидности……………………………...5

    1. Из истории рычага ………………………………..………………….….5

    1. Архимед – механик……………………………………………….….….6

    1. Что такое рычаг……………………………………………………….….7

    1. Разновидности рычага …………………………………………………..9

III . Практическая часть…………………………………………………..…..11

3.1 Рычаги в технике и быту ……………………………………………...….11

3.2. Лабораторная работа на тему

«Выяснение условий равновесия рычага» ……………………...…….12

3.3. Эксперименты в домашних условиях …………………………………13

3.4. Изготовление устройств и моделей, работающих по принципу

рычага ……………………………………………….…………………...15

IV . Заключение …………………………….…………………………..….….17

Литература ……………………………………………..………………….…..18

Приложения……………………………………………………………………...19

    Введение

Однажды мы всей семьей поехали на машине в лес. Все было просто замечательно, если бы не начавшийся дождь. Он заставил нас вернуться и поехать домой. И, конечно же, на размокшей от дождя дороге мы застряли. Все попытки вытолкать машину были напрасны… И тогда мой папа сказал: «Вот бы нам сейчас, сынок, на помощь силача какого-нибудь!». Но силачей и богатырей поблизости не оказалось, а подъехал трактор. Он размотал лебедку, привязал трос к нашей машине и за 5 минут вытащил ее.

Я всегда очень хотел быть сильным, настоящим помощником и быть похожим на русских богатырей - добрых, честных, сильных и ловких. Но тут я задал себе вопрос: «Каким же образом некоторые люди могут выполнять такие, казалось бы, непосильные для простого человека задачи?»

Я выдвинул гипотезу - скорее всего, существуют механизмы, которые помогают человеку стать сильнее. (См. слайд 1) .

Цель исследования : выяснить принцип работы простейших механизмов. (См. слайд 1) .

В поисках ответа я обратился к науке физике. Я узнал, что сила самого человека ограничена, поэтому он часто применяет устройства, позволяющие увеличить силу его действия. Такие устройства называют простыми механизмами. К ним относятся: рычаг и его разновидности – блок и ворот; наклонная плоскость и её разновидности - клин и винт.

Задачи :

1. узнать о происхождении и видах рычага;

2. провести опыты с рычагом;

3. с помощью взрослых смоделировать устройства, работающие по принципу рычага;

4. подготовить электронную презентацию по результатам исследования. (См. слайд 1) .

Объект: рычаг.

Предмет: применение рычагов в жизни людей.

Методы : поиск информации в литературе и Интернете, наблюдение, описание и измерение, опытно - экспериментальная работа, моделирование.

II . Рычаг и его разновидности.

«Дайте мне точку опоры, и я переверну Землю!»

Архимед

    1. Из истории рычага.

Человек – существо разумное. Именно разум всегда давал ему возможность создавать приспособления, делавшие его сильнее или быстрее зверя, жить в условиях, в которых он без этих вещей не мог бы выжить.

Одним из первых таких приспособлений стал рычаг. Ещё первобытный человек превратил обычный шест в инструмент для поднятия тяжестей. Подсунув длинную палку под камень и оперев ее на кусок деревяшки, которая служила опорой, можно было без проблем переместить камень в другое место. Чем длиннее шест, тем легче работать. Изобретение рычага продвинуло первобытного человека по пути его развития.

Мотыга и весло были изобретены человеком для уменьшения силы, которую необходимо было прикладывать для выполнения какой - либо работы. (См. слайд 1) .

В пятом тысячелетии до нашей эры в Месопотамии применялись весы, использовавшие принцип рычага для достижения равновесия.

Без рычага было бы невозможно поднять тяжёлые каменные плиты при постройке пирамид в Древнем Египте. Для возведения пирамиды Хеопса, имеющей высоту 147 м, было использовано 2300000 каменных глыб, самая меньшая из которых имела массу 2,5 т.

Около 1500 года до нашей эры в Египте и Индии появляется шадуф – прародитель современных кранов, устройство для поднимания сосудов с водой. В России так же использовалось подобное устройство для поднятия воды из колодца и называлось оно «Журавль».

Таким образом, мы не знаем ни имени автора рычага, ни точной даты его изобретения. Но с полной уверенностью можем утверждать, что древние люди без математических правил и законов физики придумали и широко использовали простые механизмы, опираясь на свою интуицию и опыт.

2.2 Архимед - механик.

Рычаг, блок, наклонная плоскость заинтересовали ученого Архимеда, проживавшего в Древней Греции во времена античности. В III веке до н. э. Архимед дал первое письменное объяснение принципу работы рычага, связав понятия силы, груза и плеча. Закон равновесия, сформулированный им, используется до сих пор и звучит как: «Рычаг находится в равновесии тогда, когда действующие на него силы обратно порпорциональны плечам этих сил» . Архимед изложил полную теорию рычага и успешно применял ее на практике. Плутарх сообщает, что Архимед построил в порту Сиракуз немало блочно-рычажных механизмов для облегчения подъёма и транспортировки тяжёлых грузов. Изобретённый им архимедов винт (шнек) для вычерпывания воды до сих пор применяется в Египте. Архимед является и первым теоретиком механики. Он начинает свою книгу «О равновесии плоских фигур» с доказательства закона рычага. (См. слайд 1) .

Легенда рассказывает, что построенный Гиероном в подарок египетскому царю Птолемею тяжёлый многопалубный корабль «Сиракузия» никак не удавалось спустить на воду. Архимед соорудил систему блоков (полиспаст), с помощью которой он смог проделать эту работу одним движением руки. По легенде, Архимед заявил при этом: «Будь в моём распоряжении другая Земля, на которую можно было бы встать, я сдвинул бы с места нашу» (в другом варианте: «Дайте мне точку опоры, и я переверну мир»). (См. слайд 1) .

Инженерный гений Архимеда с особой силой проявился во время осады Сиракуз римлянами в 212 году до н. э. в ходе Второй Пунической войны. А ведь в это время ему было уже 75 лет! Архимед создал метательные машины, способные бросать с большой скоростью камни массой около 250 кг и механизмы, бросающие с берега на суда тяжёлые брёвна. В последние годы были проведены несколько экспериментов с целью проверки правдивости описания этого «сверхоружия древности». Построенная конструкция показала свою полную работоспособность.

Так называемая «Лапа Архимеда» представляла собой уникальную подъемную машину - прообраз современного крана. Это был огромный рычаг, выступающий за городскую стену и оснащённый противовесом. (См. слайд 1) .

Знаменитый историк древности Полибий писал, что если римский корабль пытался пристать к берегу возле Сиракуз, эта машина, управляемая специально обученным человеком, захватывала нос корабля и переворачивала его. Римляне вынуждены были отказаться от мысли взять город штурмом и перешли к осаде. Полибий писал: «Такова чудесная сила одного человека, одного дарования, умело направленного на какое-либо дело… римляне могли бы быстро овладеть городом, если бы кто-либо изъял из среды сиракузян одного старца».

Оценивая роль Архимеда – механика, хочется отметить, что он произвел соответствующие расчеты и сконструировал более сложные механизмы, которые могли усиливать и преобразовывать движения. Благодаря Архимеду человечество научилось спускать на воду большие корабли, строить боевые машины.

2.3 Что такое рычаг.

И все-таки сила человека ограничена, поэтому он часто применяет устройства (или приспособления), позволяющие преобразовать силу человека в силу, существенно большую. Тяжёлый предмет (камень, шкаф, станок), который невозможно передвинуть непосредственно, сдвигают с места при помощи достаточно длинной и прочной палки – рычага.

Рычаг представляет собой твердое тело, способное вращаться вокруг неподвижной опоры. У рычага есть два плеча. Плечо - это расстояние от точки опоры до точки приложения силы. В качестве рычага могут быть использованы лом, доска и тому подобные предметы. Существуют закономерности: (См. слайд 1) .

1)чем длиннее плечо, тем меньше нужно силы, чтобы поднять один и тот же груз;

2) чем длиннее плечо, тем больший путь оно проходит;

3) во сколько раз больше плечо рычага, во столько раз меньше должен быть груз для поддержания равновесия.

Данные закономерности мне удалось сформулировать на языке, понятном ученикам начальной школы, т.к. мы не знакомы ещё с обратной пропорциональностью и свойствами пропорций. А наглядно убедиться в справедливости закономерностей помогла самодельная лабораторная установка – рычаг, выполненная из конструктора «Лего».

Различают два вида рычагов.

У рычага 1-го рода неподвижная точка опоры О располагается между линиями действия приложенных сил, а у рычага 2-го рода она располагается по одну сторону от них. (См. слайд 1) .

Использование рычага позволяет получить выигрыш в силе. Для расчета выигрыша в силе, получаемого с помощью рычага, следует знать правило, открытое Архимедом еще в III в. до н. э.

Итак, для того чтобы уравновесить меньшей силой большую силу, необходимо, чтобы ее плечо превышало плечо большей силы .

С тех пор как Архимед установил правило рычага, оно просуществовало в первозданном виде почти 1900 лет.

Таким образом, в большинстве случаев рычаг применяют для того, чтобы получить выигрыш в силе, т.е. увеличить силу, действующую на тело, в несколько раз.

2. 4.Разновидности рычага

Разновидностями рычага являются два простых механизма: блок и ворот. (См. слайд 1) .

Блок представляет собой устройство, имеющее форму колеса с желобом, по которому пропускают веревку, трос или цепь.

Различают два основных вида блоков - подвижный и неподвижный. (См. слайд 1) .

У неподвижного блока ось закреплена и при подъеме грузов не поднимается и не опускается, а у подвижного блока ось перемещается вместе с грузом. Неподвижный блок не дает выигрыша в силе. Его применяют для того, чтобы изменить направление действия силы. Так, например, прикладывая к веревке, перекинутой через такой блок, силу, направленную вниз, мы заставляем груз подниматься вверх.

Иначе обстоит дело с подвижным блоком. Этот блок позволяет небольшой силой уравновесить силу, в 2 раза большую.

На практике часто применяют комбинацию подвижного блока с неподвижным. Это позволяет изменить направление силового воздействия с одновременным двукратным выигрышем в силе.

Для получения большего выигрыша в силе применяют грузоподъемный механизм, называемый полиспастом . Греческое слово «полиспаст» образовано из двух корней: «поли» - много и «спао» - тяну, так что в целом получается «многотяг». (См. слайд 1) .

Полиспаст представляет собой комбинацию из двух обойм, одна из которых состоит из трех неподвижных блоков, а другая - из трех подвижных блоков. Поскольку каждый из подвижных блоков удваивает силу тяги, то в целом полиспаст дает шестикратный выигрыш в силе.

Ворот состоит из цилиндра (барабана) и прикрепленной к нему рукоятки. Этот простой механизм был изобретен в глубокой древности. Чаще всего его применяли для подъема воды из колодцев. (См. слайд 1) .

Более совершенным механизмом является лебёдка. Она представляет собой сочетание ворота с двумя зубчатыми колёсами разного диаметра. Лебедку можно рассматривать как комбинацию двух воротов. (См. слайд 1) .

Многовековая практика доказала, что ни один из механизмов не даёт выигрыша в работе. Применяют же их для того, чтобы в зависимости от условий работы выиграть в силе или пути. Уже древним учёным было известно правило : во сколько раз мы выигрываем в силе, во столько же раз проигрываем в расстоянии. Это правило назвали «золотым правилом» механики. Его автором является древнегреческий учёный Герон Александрийский, живший в I веке н.э. (См. слайд 1) .

III . Практическая часть.

Изучив теоретический материал об истории рычага, о его первооткрывателе, о принципе действия и разновидностях я решил провести исследования.

3.1. Рычаги в технике и в быту.

В нашем современном мире рычаги находят широкое применение как в природе, так и в рукотворном мире, созданном человеком. Практически любой механизм, преобразующий механическое движение, в том или ином виде использует рычаги.

Рычаги встречаются в разных частях тела человека и животных. Это, например, конечности, челюсти. Много рычагов можно увидеть в теле насекомых и птиц.

Рычаги так же распространены и в быту, это и водопроводный кран, и дверь, и различные кухонные приборы. (См. слайд 1) .

Правило рычага лежит в основе действия рычажных весов, различного рода инструментов и устройств, применяемых там, где требуется выигрыш в силе или в расстоянии. (См. слайд 1) .

Выигрыш в силе и в расстоянии мы можем наблюдать при работе с ножницами. Ножницы - это рычаг, ось вращения которого проходит через винт, соединяющий обе половины ножниц. В зависимости от назначения ножниц их устройство бывает различным. Ножницы, предназначенные для резки бумаги, имеют длинные лезвия и почти такой же длины ручки. Для резки бумаги не требуется большой силы, а длинным лезвием удобнее резать по прямой линии. В данном случае мы имеем выигрыш в расстоянии. Ножницы для резки листового металла имеют ручки гораздо длиннее лезвий, так как сила сопротивления металла велика и для ее уравновешивания плечо действующей силы приходится значительно увеличивать. Еще больше разница между длиной ручек и расстоянием режущей части и оси вращения в кусачках, предназначенных для перекусывания проволоки. Очевидно, что в этих случаях имеет место выигрыш в силе. (См. слайд 1) .

Рычаги используются и в других инструментах - это рукоятки тисков и верстаков, рычаги станков, плотницкие инструменты, инструменты спасателей и т. д. (См. слайд 1) .

Конечно же, рычаги различного вида распространены в технике. Самые простые примеры их применения – это рычаг переключения коробки передач в автомобиле , педали автомобиля или трактора, ручной тормоз велосипеда. (См. слайд 1) .

Даже ручка швейной машины и клавиши пианино – это тоже рычаги. (См. слайд 1) .

Все мы любим спорт! И если внимательно посмотреть, то мы увидим, что в этой области также применяются рычаги. Прыжки в высоту с шестом очень наглядный пример, п ри помощи рычага длинной около трех метров и правильного приложения усилия, спортсмен взлетает на головокружительную высоту до шести метров. Кроме этого, рычагами снабжены многие спортивные снаряды. (См. слайд 1) .

На любой строительной площадке работают экскаваторы и башенные подъемные краны - это сочетание рычагов, блоков, воротов. В зависимости от "специальности" краны имеют различные конструкции и характеристики. (См. слайд 1) .

Широкое применение рычаги нашли и в сельском хозяйстве – трактора, комбайны, сеялки и другие механизмы. (См. слайд 1) .

Итак, в большинстве случаев простые механизмы (греч. "механэ" - машина, орудие) применяют для того чтобы получить выигрыш в силе.

3.2. Лабораторная работа

Оборудование : рычаг на штативе, набор грузов, линейка.

Цель : выяснить условия равновесия рычага.

Ход работы.

1. Путем вращения гаек на концах рычага уравновесил его так, чтобы он расположился горизонтально.

2. Подвесил три груза к левому плечу рычага на расстоянии 7 см от оси вращения.

3. Путем проб установил место на правом плече рычага, к которому следует подвесить один груз, чтобы уравновесить три предыдущих. Измерил расстояние от этого места до оси вращения.

4. Считая, что каждый груз весит 1 Н, заполнил таблицу.

5. Сделал вывод о справедливости правила равновесия рычага.

(См. слайд 1) .

F2

l2 : l1

7 см

3H

21 см

1H

10 см

2H

20 см

1H

9 см

18 см

3.3.Эксперименты в домашних условиях.

Пользуясь книгой Я.И. Перельмана «Занимательная физика» и материалами Интернет – сайтов «Класс!ная физика» и «Физика вокруг нас» провёл занимательные эксперименты с рычагами.

1. Машинки. (См. слайд 1) .

Я взял большую и маленькую игрушечные машинки. Поставил их на концы линейки, положенной серединой на круглый карандаш. Большая машинка перетянула, т.к. она тяжелее. Если сдвинуть карандаш поближе к большой машинке, то они уравновесятся. Когда я подвинул карандаш еще ближе к большой машинке, то маленькая перевесила.

2. Сколько силы в пальцах?

Я взял две круглые зубочистки. Положил одну зубочистку серединой на средний палец (ближе к ногтю), а на концы - указательный и безымянный. Попытался сломать зубочистку, надавив на нее указательным и безымянным пальцами. Передвинул зубочистку на середину пальца. Снова попытался сломать зубочистку. Когда зубочистка находилась на кончиках пальцев, сломать ее было почти невозможно (пальцы выполнили роль рычага второго рода, похожего на щипцы для колки орехов). Точка опоры находится там, где начинаются пальцы. Чем дальше от точки опоры находится зубочистка, тем больше силы нужно приложить. ?????

3. Полиспаст.

Привязал веревку к ручке лыжной палки. Поместил обе палки на расстояние 50 см друг от друга и три раза обернул их ручки веревкой. Потянул свободный конец веревки, в то время как мои помощники пытались разъединить палки. Несмотря на то, что друзья пытаются развести палки в стороны, я в одиночку могу сдвинуть их вместе. (Палки и веревка ведут себя, как полиспаст - приложенная мной сила приумножается благодаря веревке, намотанной на ручки палок, поэтому я выигрываю в силе почти в пять раз по сравнению с моими помощниками.

4. Рычаг. (См. слайд 1) .

Обыкновенная палка стала для человека рычагом - самым простым механизмом. На обычной палке очень удобно вдвоем переносить груз. Пользуясь ею, можно легко поднимать и передвигать тяжести.

Опыт 1. Я взял не очень длинную палку, просунул ее под ручку чемодана и, пригласив на помощь товарища, мы приподняли вдвоем чемодан. Если чемодан находится точно посередине, то каждый из нас нагружен одинаково. Когда мы сдвинули чемодан к одному из концов палки, всё изменилось. Более легким груз стал для того, кто держит длинный конец. Изменились плечи рычага, изменилось и соотношение сил, которые удерживают груз в поднятом положении. Руки каждого из нас являются опорой рычага, и если расстояние до груза будет меньшим, то нагрузка на эту точку опоры будет большей.

Опыт 2 . Я взял небольшую палку и около одного из ее концов сбоку вбил гвоздь. Надел на этот конец утюг (гвоздь нужен для того, чтобы утюг не соскользнул на пол) и положил рычаг на спинку стула. Держа рычаг за свободный конец, двигал его, то приближая точку опоры к грузу, то удаляя от него. Я убедился, что, чем больше расстояние от руки до точки опоры, тем легче удержать груз. Тот же результат я получил, когда передвигал руку вдоль рычага к точке опоры, оставляя неизменным расстояние от опоры до груза.

5. Вытаскиваю гвоздь.

Используя молоток, я забил гвоздь в кусок древесины на 2/3 его длины. Попытался вытащить руками гвоздь из куска дерева. У меня ничего не получилось, как я ни старался. Тогда я взял гвоздодер и легко с его помощью вытащил гвоздь. Гвоздодер в моем случае действует как рычаг, который является простым аппаратом, используемый для преодоления сопротивления во второй точке, путем применения силы.

3.4. Изготовление устройств и моделей, работающих по принципу рычага.

Применив знания, полученные при изучении рычага, изготовил с помощью папы следующие устройства и модели.

1. Лебедка своими руками. (См. слайд 1) .

От плохой дороги никто не застрахован, и если ваш автомобиль крепко увяз в грязи, спасти его поможет только лебедка. Стоит ли тратить огромную сумму денег на дорогостоящую вещь и покупать ее в магазине, когда можно сделать лебедку своими руками.

Нам потребовалось:

Ось для вращения и 2 подходящие трубки большего и меньшего диаметра;

Крепкий трос;

Ход работы:

Наша лебедка, сделанная своими руками, работает по принципу рычага. Для основы самодельной лебедки может послужить отрезок трубы. Чтобы привести в работу трубу, ее необходимо надеть на ось и закрепить тросом. Петлю троса необходимо намотать несколько раз вокруг трубы и насадить на любую ручку.

При повороте ручки труба будет вращаться по оси, а трос наматываться на нее. Такая лебедка пригодится не только, чтобы вытаскивать автомобиль из грязи, но и для перемещения различных грузов, например, на даче.

2. Полиспаст. (См. слайд 1) .

Я взял прочный капроновый шнур, 2 отдельных блока, груз. Собрал комбинацию из 1 подвижного и 1 неподвижного блока и закрепил их. Теперь я могу поднимать без труда грузы, которые без полиспаста не мог просто удержать в руке.

Проведя опыт с динамометром, я убедился, что полиспаст дает двукратный выигрыш в силе!

IV . Заключение.

В результате проведенной работы я убедился в следующем правиле – во сколько раз мы выигрываем в силе, во столько же раз проигрываем в расстоянии.

Я узнал об истории рычага, о его первооткрывателе, о принципе действия и разновидностях.

Рычаги разных видов встречаются в повседневной жизни на каждом шагу:

Тачку легче везти, если у нее длинные ручки;

Гвоздь выдернуть легче, если гвоздодер имеет большую длину;

Гайку завернуть значительно легче ключом с длинной рукояткой.

Никогда не стоит забывать о «золотом правиле» механики, который упрощенно выглядит так: выигрыш в силе - проигрыш в пути. Иной раз стоит пожертвовать более коротким путем, чтобы выиграть в силе. Работа все равно будет одна и та же, но сделать ее легче потому, что увеличению пути соответствует и увеличение времени. А за больший промежуток времени работу сделать легче - это ясно каждому.

При конструировании машин бывает и наоборот, когда жертвовать приходится силой, чтобы выиграть в пути, выиграть во времени.

В процессе работы над темой я на собственном опыте убедился, что рычаг и его разновидности действительно дают человеку выигрыш в силе или в расстоянии, или применяются для удобства. Таким образом подтвердил свою гипотезу, что не каждый силач обязательно силён. Теперь я становлюсь сильнее не только благодаря ежедневным физическим тренировкам, но и применяя новые полученные знания. Название моей работы ни в коем случае нельзя произносить с утвердительной интонацией. Наоборот, есть ум – будет и сила. Материалы моего исследования несомненно пригодятся на уроках окружающего мира в начальной школе, а может быть, и на уроках физики в 7-ом классе.

В заключение хочется вспомнить слова Ёжика из замечательной сказки Владимира Сутеева «Палочка – выручалочка»: «Палку всегда найти можно, а вот выручалочку, - а выручалочка-то вот она где!».

Литература

1. Балашов М.М. Физика. – М.: Просвещение, 1994.

2. Кац Ц.Б. Биофизика на уроках физики. – М.: Просвещение, 1988.

3. Перельман Я.И. Занимательная физика. Книга 1. – М.: Наука, 1979.

4. Физика. 7 класс/ Громов С.В., Родина Н.А. – М.: Просвещение, 2000.

5. Физика.7 класс/ Пёрышкин А.В., Родина Н.А. – М.:Дрофа, 2003.

6. Энциклопедия для детей. Т. 14 – Техника. – М.: Аваста+, 2000.

7. Я познаю мир. Детская энциклопедия – Мир прекрасного. – М.: Астрель, 2004.

Приложение

Фотоотчет

Лабораторная работа «Выяснение условий равновесия рычага»

Мои эксперименты http://vse-svoimiruchkami.ru/glavnaya/ )




Изготовление полиспаста


Городской тур межшкольной конференции

«Первые шаги в науку».

Название работы «Сила есть! Ума не надо?»

Ученик(ца) (фамилия, имя полностью) Абрамов Данила

МБОУ СОШ ________32__класс___________ 4 Б

Руководитель работы Зиберт Галина Ивановна

Тип работы (проект / реферат / исследование) исследование

Критерии оценивания работы

1) Соблюдение требований к оформлению работы. Все требования соблюдены .

2) Объем изученного материала: поиск информации в литературе и Интернете, наблюдение, описание и измерение, опытно - экспериментальная работа, моделирование.

3) Познавательная ценность, актуальность, практическая и теоретическая значимость изученного материала. В работе изучены происхождение и виды рычагов, проведены опыты с рычагом, смоделированы устройства, работающие по принципу рычага.

4) Проблема, гипотеза, цель, задачи работы. Гипотеза: скорее всего, существуют механизмы, которые помогают человеку стать сильнее. Цель: выяснить принцип работы простейших механизмов. Задачи: провести эксперименты с целью выявления свойств рычага и принципа его работы.

5) Исследовательское мастерство (аргументы, выводы; грамотность, логичность изложения материала, соблюдение научного стиля изложения) Работа составлена грамотно, соблюден научный стиль изложения, сделаны выводы по каждому опыту и по работе в целом.

Подпись рецензента (расшифровка подписи)

Уюкина Людмила Григорьевна

Рычаг является одним из древнейших механизмов. Этот простейший механизм позволял многократно увеличивать физические возможности человека. Сегодня трудно определить место и время, когда рычаг был впервые применен человеком осознанно. Наверное, это была палка, с помощью которой человек выворачивал из земли камни и выдергивал съедобные корни. С помощью палки было легче приподнять тяжелый камень, поддев его снизу. Чем палка длиннее, тем легче передвигать камень. Палка здесь выступает в роли простейшего рычага, принцип действия которого люди понимали уже в те давние времена. Рычаг представляет собой жесткий стержень, способный свободно вращаться относительно точки опоры. Примером рычага являются такие древнейшие орудия труда, как мотыга, метла, весло, молоток с расщепом. Человеческое тело представляет целую систему рычагов, где суставы служат точками опоры.

Уже в V тысячелетии до нашей эры механики Месопотамии создали равновесные весы, применив принцип рычага. Установив точку опоры прямо под серединой качающейся доски и положив на оба ее края грузы, они заметили, что вниз опустился край с большим грузом. Если вес грузов будет одинаков, то доска будет находиться в горизонтальном положении. Отсюда следовал вывод, если к равным плечам прикладываются равные усилия, то рычаг находится в равновесии. Если же сменить точку опоры и сделать плечи рычага разными, потребуется приложить разные усилия к его краям, чтобы привести рычаг в равновесие. Меньше усилий потребуется приложить к длинному рычагу и больше — к короткому. Древние римляне использовали этот принцип при создании такого измерительного прибора, как безмен.

Используя принцип рычага, появилась возможность создания механизмов, облегчающих человеческий труд и позволяющих выполнять действия, для которых было недостаточно физической силы человека. Наглядным примером тому могут служить знаменитые египетские пирамиды. Вес блоков, из которых возводились пирамиды, достигал 2500 тонн. Блоки нужно было не только передвигать, но и поднимать. Некоторые ученые и сегодня сомневаются, что древние египтяне могли сами возвести пирамиды без использования двигателей и других мощнейших механизмов. Однако в результате раскопок ученым посчастливилось обнаружить остатки необычного деревянного приспособления. Гигантские блоки, обвязанные веревками, поднимались вверх с помощью деревянных рычагов, имеющих длинные плечи. Приложив немалую силу, строители жали на длинные плечи каждого из рычагов и поднимали блок на высоту роста. Рычаг нашел повсеместное применение. Но только в III в. до н. э. выдающийся механик Архимед, произведя математические расчеты, создал знаменитую теорию рычага.

Решающим для определения вида рычага является расположение точки опоры на нем. В рычагах первого рода точка опоры находится между точками приложения сил, их еще называют двуплечими. Чтобы рычаг находился в состоянии равновесия, силы, которые приложены к плечам, обязательно направлены в одну сторону. Примером таких рычагов являются равновесные весы, ножницы, пассатижи, безмен, шлагбаум. В одноплечих рычагах или рычагах второго рода точки приложения обеих сил находятся от точки опоры с одной стороны. Хотя обе силы приложены к одному плечу, направлены они в разные стороны. Примером такого рычага может служить тачка.

Когда приходится приподнимать тяжелый груз, например, большой валун на поле, часто поступают так: подсовывают прочную палку одним концом под валун, подкладывают близ этого конца небольшой камень, полено или что-нибудь другое для опоры и налегают рукой на другой конец палки. Если валун слишком тяжел, то таким способом удается его приподнять с места.

Такая прочная палка, могущая поворачиваться вокруг одной точки, называется «рычагом», а точка, вокруг которой рычаг поворачивается, – его «точкой опоры». Надо запомнить также, что расстояние от руки (вообще от точки, где приложена сила) до точки опоры называется «плечом рычага»; так же называется расстояние от места, где на рычаг напирает камень, до точки опоры. У каждого рычага, следовательно, два плеча. Эти названия частей рычага нам нужны для того, чтобы было удобнее описать его действие.

Испытать работу рычага нетрудно: вы можете превратить в рычаг любую палочку и пробовать опрокидывать ею хотя бы стопку книг, подпирая свой рычаг книгой же. При таких опытах вы заметите, что, чем длиннее плечо, на которое вы напираете рукой, по сравнению с другим плечом, тем легче поднять груз. Вы можете на рычаге небольшою силою уравновесить большой груз только тогда, когда действуете на достаточно длинное плечо рычага, – длинное по сравнению с другим плечом. Каково же должно быть соотношение между вашею силою, величиной груза и плечами рычага, чтобы сила ваша уравновешивала груз? Соотношение таково: ваша сила должна быть во столько раз меньше груза, во сколько раз короткое плечо меньше длинного.

Приведем пример. Предположим, нужно поднять камень весом 180 кг; короткое плечо рычага равно 15 см, а длинное – 90 см. Силу, с которой вы должны напирать на конец рычага, обозначим буквой х. Тогда должна существовать пропорция:

х: 180= 15: 90.

Значит, вы должны напирать на длинное плечо с силою 30 кг.

Еще пример: вы в состоянии налегать на конец длинного плеча рычага с силою только 15 кг. Какой наибольший груз можете вы поднять, если длинное плечо равно 64 см, а короткое – 28 см?

Обозначив неизвестный груз через х, составляем пропорцию:

15: х = 28: 84,

Значит, вы можете таким рычагом поднять не больше 45 кг.

Сходным образом можно вычислить и длину плеча рычага, если она неизвестна. Например, сила в 10 кг уравновешивает на рычаге груз в 150 кг. Какой длины короткое плечо этого рычага, если его длинное плечо равно 105 см?

Обозначив длину короткого плеча буквою х, составляем пропорцию:

10: 150 = х: 105,

Короткое плечо равно 7 см.

Тот вид рычага, который был рассмотрен, называется рычагом первого рода. Существует еще рычаг второго рода, с которым мы теперь познакомимся.

Предположим, нужно поднять большой брус (рис. 14). Если он слишком тяжел для ваших сил, то вы засовываете под брус прочную палку, упираете ее конец в пол и тянете за другой конец вверх. В данном случае палка является рычагом; точка его опоры на самом конце; ваша сила действует на второй конец; но груз напирает на рычаг не по другую сторону от точки опоры, а по ту же сторону, где приложена ваша сила. Иными словами, плечи рычага в данном случае: длинное – полная длина рычага и короткое – часть его, засунутая под брус. Точка же опоры лежит не между силами, а вне их. В этом отличие рычага 2-го рода от рычага 1-го рода, у которого груз и сила расположены по разные стороны от точки опоры.

Рис. 14. Рычаги 1-го и 2-го рода: груз и сила расположены по разные стороны от точки опоры

Несмотря на это отличие, соотношение сил и плеч на рычаге 2-го рода такое же, как на рычаге 1-го рода: сила и груз обратно пропорциональны длинам плеч. В нашем случае, если для непосредственного поднятия двери нужно, например, 27 кг, а длина плеч 18 см и 162 см, то сила х, с которой вы должны действовать на конец рычага, определяется из пропорции

На тело человека всегда действуют силы тяжести, силы инерции, силы сопротивления среды и мышечные силы тяги, которые взаимодействуют и вызывают различные движения и перемещения тела и его частей в пространстве. Отдельные кости скелета можно представить себе как рычаги, на которые действуют мышечные силы, силы тяжести или другие внешние силы. Суставы, связывающие кости в звенья, обеспечивают необходимую подвижность частей тела, которая зависит не только от формы суставов, но и от работы мышц.

В механике рычагом называют твёрдое тело, имеющее точку опоры, около которой оно может вращаться под влиянием противодействующих друг другу сил. По отношению точек приложения силы мышцы и силы сопротивления к точке опоры различают рычаги первого ивторого рода . Если опора располагается между точками приложения сил, то это рычаг первого рода. Если же обе силы приложены с одной стороны опоры, то это рычаг второго рода. Для равновесия рычага первого рода силы должны быть направлены в одну сторону, а для равновесия рычага второго рода – в разные стороны. Основное свойство рычага любой формы при равновесии выражается равенством моментов сил.

Рычаг первого рода (рычаг равновесия ). Примером такого рычага может служить череп с точкой опоры в атланто-затылочном сочленении, лежащей на фронтальной оси этого сустава. Точка приложения силы тяжести головы (центр тяжести головы) находится кпереди от точки опоры, точки приложения сил мышечных тяг разгибателей головы и шеи – кзади. Таз так же является рычагом первого рода с точкой опоры на поперечной оси тазобедренного сустава. В зависимости от положения туловища общий центр тяжести тела (ОЦТ) может занять положение кпереди или кзади от поперечной оси тазобедренного сустава. В этом случае равновесие тела обеспечивает сила мышечной тяги разгибателей позвоночного столба (ОЦТ - кпереди) или сгибателей (ОЦТ - кзади).

Рычаги второго рода имеют две разновидности. Первый, именуемый рычагом силы, характеризуется тем, что плечо мышечной тяги больше плеча силы тяжести. Примером такого рычага является стопа с точкой опоры на поперечной оси плюснофаланговых суставов. Сила тяжести тела приходится на таранную кость. Сила мышечной тяги трёхглавой мышцы голени направлено кверху, точка её приложения – пяточный бугор. Соответственно, при сгибании стопы трёхглавая мышца развивает усилие меньше чем тяжесть тела человека.

Вторая разновидность рычага второго рода именуется рычагом скорости .

В этом рычаге плечо силы тяжести превышает плечо силы мышечной тяги, то есть для преодоления силы тяжести мышцы должны развивать усилие больше, чем тяжесть звена тела или груза, удерживаемого им. Примером может служить предплечье с точкой опоры на поперечной оси локтевого сустава.

Одни и те же соединения костей могут выступать в определённых условиях, как рычаги первого, так и второго рода. Так, например, череп при свободном прямом держании головы является рычагом первого рода. При висе на зубах (как это делают артисты цирка) или при захвате головы под нижней челюстью в различных видах борьбы череп будет являться рычагом второго рода. В этих случаях внешним силам, разгибающим голову, будут противодействовать силы тяг всех мышц, прикрепляющихся к подъязычной кости, длинной мышцы головы, передней и латеральной прямых мышц головы. Стопа, как рычаг силы (рычаг второго рода) при некоторых условиях может выступать как рычаг скорости и рычаг равновесия. Так, например, в том случае, когда стопа не опирается о землю и свободно разгибается в голеностопном суставе, она будет функционировать как рычаг скорости. При ударе по мячу в футболе тыльной стороной стопы точка приложения равнодействующей силы мышц разгибателей стопы (передняя большеберцовая мышца, длинный разгибатель пальцев, длинный разгибатель большого пальца стопы) и точка приложения силы тяжести мяча будут расположены по одну сторону от поперечной оси вращения голеностопного сустава. Силы будут направлены в противоположные стороны, плечо равнодействующей силы мышц меньше плеча силы тяжести мяча, то есть в данном случае стопа будет являться рычагом скорости (рычаг второго рода).

В качестве рычага равновесия (рычага первого рода) стопа будет функционировать, например, при отталкивании тела от водной среды во время плавания стилем брасс, где силы тяги мышц сгибателей стопы будут противодействовать сопротивлению водной среды.

Знания рычагового принципа опорно-двигательного аппарата применяются при разработке спортивных тренажеров, с помощью которых удаётся нагружать как функциональные группы мышц, так и отдельные мышцы и даже определённые пучки мышц.

ОСНОВНАЯ

    Козлов В.И. Анатомия человека. - М., 1978. - 547 с.

    Иваницкий И.О. Анатомия человека. - Т. 1. - М., 1956. - 548 с.

    Иваницкий Н.О. Анатомия человека. - М., 1985. – 544 с.

Дополнительная

    Гладышева А.А. Анатомия человека. - М., 1977. - 343 с.

    Привес М.Г. и др. Анатомия человека. - А., 1969. - 343 с.

    Сапин М.Р., Билич Г.А. Анатомия человека. - М., 1989. - 544 с.

    Синельников Р.Д. Атлас анатомии человека. - Т. 1. - М., 1972. - 458 с.

    Синельников Р.Д. Атлас анатомии человека. - Т. 2. - М., 1973. - 468 с.

    Синельников Р.Д. Атлас анатомии человека. - Т. 3. - М., 1974. - 399 с.


Самое обсуждаемое
Майкл оуэн объявил о завершении карьеры Майкл оуэн объявил о завершении карьеры
Лингвистические конкурсы и олимпиады Традиционная лингвистическая олимпиада школьников Лингвистические конкурсы и олимпиады Традиционная лингвистическая олимпиада школьников
Нормативы и подготовка спецподразделений разных стран мира Нормативы и подготовка спецподразделений разных стран мира


top