II. Расчеты на удар тел

II. Расчеты на удар тел

Вопросы для самопроверки 1. Какие нагрузки динамическими? называются статическими и какие 2. Какое явление называется ударом? 3. Какая гипотеза лежит в основе теории удара? 4. Что положено в основу вывода формул для определения перемещений при ударе? 5. Что представляет собой «внезапное действие нагрузки» и чему равен коэффициент динамичности при таком воздействии? 6. Как определяются перемещения и напряжения при ударе? 7. Зависят ли напряжения при ударе от модуля упругости материала системы, подвергающейся удару?

УДАР Как уже известно, статической называется нагрузка, которая весьма медленно возрастает от нуля до своего конечного значения При быстро возрастающей нагрузке учитываются силы инерции, появляющиеся в результате деформации системы Силы инерции необходимо учитывать также при действии нагрузки, вызывающей движение тела с некоторым ускорением Такие нагрузки, а также вызванные ими деформации и напряжения называются динамическими

УДАР Рассмотрим какую-либо неподвижно закрепленную упругую систему, на которую с высоты h падает груз Р (рис.) Полагая, что удар неупругий, ударяющее тело не отскакивает, а перемещается вместе с системой В некоторый момент времени скорость перемещения груза становится равной нулю Деформация и напряжения в достигают наибольших значений конструкции Затем происходят постепенные затухающие колебания системы и груза и устанавливается состояние статического равновесия, при котором деформации конструкции и напряжения в ней равны деформациям и напряжениям от статически действующей силы Р

УДАР В основе приближенной теории удара лежит гипотеза о том, что эпюра перемещений системы от груза Р при ударе подобна эпюре перемещений, возникающих от этого же груза, но действующего статически Например, эпюра наибольших (динамических) прогибов балки от удара по ней падающего груза имеет вид Эпюра прогибов от статически приложенных сил (статических прогибов) показана на рис. На основании указанной гипотезы (1)

УДАР Рассмотрим сначала расчет на удар, когда масса упругого тела мала и ее можно принять равной нулю. Для таких случаев приведенная гипотеза становится точной, а не приближенной Тогда работа груза в результате его падения равна В момент времени, когда деформация системы достигает наибольшей величины, скорости движения груза и системы, а следовательно, и кинетическая энергия их равны нулю Работа груза в этот момент равна потенциальной энергии деформации упругой системы (2) Из сформулированной гипотезы следует, что динамические перемещения можно получить путем умножения перемещений от статического действия силы Р на динамический коэффициент

УДАР Таким образом, перемещение от динамического (ударного) действия нагрузки можно рассматривать как статическое перемещение от силы Тогда потенциальная энергия деформация системы (3) Подставим это выражение в равенство (2): или С учетом формулы (1) получим выражение: Из этого уравнения (4) следует, что (4) (5) В формуле (5) перед радикалом взят знак «плюс» , т. к. прогиб не может быть отрицательным Скорость падающего груза в момент соприкосновения с системой, подвергающейся удару, связана с высотой падения соотношением или

УДАР Теперь формулу (5) можно представить в следующем виде: (6) На основании формул (1), (5) и (6) получим следующее выражение динамического коэффициента: (7) Из принятой гипотезы следует, что динамические напряжения относятся к статическим напряжениям так же, как динамические перемещения к статическим: (8) Таким образом, для определения наибольших напряжений и перемещений при ударе напряжения и перемещения, найденные в результате расчета системы на силу Р, действующую статически, следует умножить на динамический коэффициент или рассчитать систему на действие некоторой статической силы, но равной произведению Рkд

УДАР Рассмотрим случай, когда высота падения груза равна нулю Такой случай носит название нагрузки внезапного (мгновенного) действия Такой случай возможен, если выбить стойку поддерживающую какую – либо конструкцию (например, колонну перекрытия или стойку опалубки и т. д.) Тогда при h=0 из формулы (7) получим: (9) Следовательно, при внезапном действии нагрузки деформации системы и напряжения в ней вдвое больше, чем при статическом действии той же нагрузки Поэтому, например, при производстве разопалубчных работ следует избегать внезапного приложения нагрузки, где это возможно

Рассмотрим какую-либо неподвижно закрепленную упругую систему, на которую с высоты h падает груз Я (рис. 6.14). Пройдя путь , груз Р, движущийся с некоторой скоростью, приходит в соприкосновение с неподвижной системой. Это явление называется ударом. При изучении удара предполагаем, что удар является неупругим, т. е. ударяющее тело не отскакивает от конструкции, а перемещается вместе с ней.

После удара в некоторый момент времени скорость перемещения груза станрвится равной нулю. В этот момент деформация конструкции и напряжения, возникающие в ней, достигают своих наибольших значений. Затем происходят постепенно затухающие колебания системы и груза; в результате устанавливается состояние статического равновесия, при котором деформации конструкции и напряжения в ней равны деформациям и напряжениям, возникающим от статически действующей силы Р.

Система, подвергающаяся удару, может испытывать различные виды деформаций: сжатие (рис. 6.14, а), изгиб (рис. 6.14, б,в), кручение с изгибом (рис. 6.14, г) и др.

Целью расчета сооружения на удар является определение наибольших деформаций и напряжений, возникающих в результате удара.

В курсе сопротивления материалов предполагается, что напряжения, возникающие в системе при ударе, не превышают пределов упругости и пропорциональности материала, а потому при изучении удара можно использовать закон Гука.

В основе приближенной теории удара, рассматриваемой в курсе сопротивления материалов, лежит гипотеза о том, что эпюра перемещений системы от груза Р при ударе (в любой момент времени) подобна эпюре перемещений, возникающих от этого же груза, но действующего статически.

Если, например, эпюра наибольших прогибов балки от удара по ней падающим с высоты h грузом Р (динамических прогибов) имеет вид, показанный на рис. 7.14, а, а эпюра прогибов от статически приложенной силы Р (статических прогибов - вид, изображенный на рис. 7.14, б, то на основании указанной гипотезы

где - динамические прогибы (от удара грузом Р) в сечениях балки соответственно с абсциссой и под грузом; - статические прогибы (от силы Р, действующей статически) в тех же сечениях; - динамический коэффициент.

Из приведенной гипотезы следует, что скорости движения различных точек системы, воспринимающей удар, в каждый момент времени относятся друг к другу как перемещения этих точек от статически действующего груза Р. В тот момент времени, когда скорость движения точки системы в месте удара равна нулю, скорости движения всех остальных ее точек также равны нулю.

Рассмотрим сначала расчет на удар в случаях, когда масса упругого тела, подвергающегося удару, мала и ее при расчете можно принять равной нулю. Для этих случаев приведенная выше гипотеза становится точной, а не приближенной, и потому позволяет получить точное решение задачи.

Обозначим А наибольшее перемещение системы по направлению груза Р (см. рис. 6.14).

Тогда работа груза в результате падения его с высоты h равна . В момент времени, когда деформация системы достигает наибольшей величины, скорости движения груза и системы, а следовательно, и кинетическая энергия их равны нулю. Работа груза к этому моменту равна, таким образом, потенциальной энергии U деформации упругой системы, т. е.

Из сформулированной выше гипотезы следует, что перемещения точек упругой системы, возникающие в результате удара (динами-ческие перемещения), можно получить путем умножения перемещений, возникающих от статического действия силы Р, на динамический коэффициент [см. формулу (7.14)].

Таким образом, перемещение от динамического (ударного) действия нагрузки можно рассматривать как статическое перемещение от силы действующей по направлению силы Р. Тогда потенциальная энергия деформации системы [см. формулы (4.11) и (10.11)]

Здесь - наибольшая сила, с которой груз давит на упругую систему (когда она имеет наибольшую деформацию). Эта сила равна сумме веса груза и силы инерции груза, возникающей в результате торможения его упругой системой.

Подставим выражение V [по формуле (9.14)] в равенство (8.14):

Но на основании формулы и, следовательно,

Здесь - перемещение от статически действующей силы Р по ее направлению.

Из условия (10.14)

В формуле (11.14) перед корнем взят знак плюс потому, что прогиб А не может быть отрицательным.

Скорость v падающего груза в момент соприкосновения с системой, подвергающейся удару, связана с высотой падения h соотношением

Поэтому формулу (11.14) можно представить и в таком виде:

На основании формул (7.14), (11.14) и (12.14) получаем следующее выражение динамического коэффициента:

Из принятой гипотезы следует, что динамические напряжения а относятся к величинам статических напряжений как соответствующие перемещения:

Таким образом, для определения наибольших напряжений и перемещений при ударе напряжения и перемещения, найденные в результате расчета системы на силу Р, действующую статически, следует умножить на динамический коэффициент или рассчитать систему на действие некоторой статической силы, но равной произведению

Рассмотрим теперь случай, когда высота падения груза равна нулю. Такой случай носит название внезапного действия (или мгновенного приложения) нагрузки. Он возможен, например, при раскружаливании железобетонного перекрытия, если стойки, поддерживающие опалубку, убрать мгновенно, выбив их одновременно все. При из формулы (13.14)

Следовательно, при внезапном действии нагрузки деформации системы и напряжения в ней вдвое больше, чем при статическом действии той же. нагрузки. Поэтому в случаях, когда это возможно, следует избегать внезапного приложения нагрузки, например раскружаливание перекрытия производить постепенно, при помощи домкратов, песочниц и т. п.

Если высота h падения груза во много раз больше перемещения то в выражении (13.14) можно пренебречь единицами и принять

Из формул (13.14) и (16.14) видно, что чем большие тем меньше Динамический коэффициент. При статической действии нагрузки напряжения в системе не зависят от модуля упругости материала, а при ударном действии зависят, так как величина обратно пропорциональна модулю, упругости.

Рассмотрим несколько примеров ударного, действия силы Р.

1. В случае продольного удара, вызывающего деформацию сжатия бруса постоянного сечения (см. рис. 6.14, а), АСТ и, следовательно, на основании формулы (13.14) динамический коэффициент

Наибольшие напряжения при таком ударе

Если высота падения h или скорость v велики, то

Из формулы (19.14) следует, что напряжения от удара обратно пропорциональны квадратному корню из объема бруса.

Для уменьшения динамических напряжений следует увеличивать податливость (уменьшать жесткость) системы, например, путем применения пружин, смягчающих удар. Предположим, что на брус, подвергающийся продольному удару, поставлена пружина (рис. 8.14). Тогда [см. формулу (30.6)]

где - диаметр проволоки (прутка) пружины; -средний диаметр пружины; - число витков пружины.

В этом случае динамический коэффициент

Сопоставление формулы (20.14) с выражением (17.14) показывает, что применение пружины приводит к уменьшению динамического коэффициента. При мягкой пружине (например, при большом значении или малом d) динамический коэффициент имеет величину меньшую, чем при жесткой.

2. Сравним прочность двух брусьев, подвергающихся продольному удару (рис. 9.14): одного - постоянного сечения с площадью F, а другого с площадью F на участке длиной и площадью в пределах остальной длины бруса

Для первого бруса

а для второго

Если длина очень мала, например при наличии поперечных выточек, то приближенно можно принять

При статическом действии силы оба бруса равнопрочны, так как наибольшие напряжения (при расчете без учета концентрации напряжений) в каждом из них При ударном же действии нагрузки динамический коэффициент по приближенной формуле (16.14) для первого бруса

а для второго (при малой величине )

т. е. в раз больше, чем для первого бруса. Таким образом, второй брус при ударном действии силы менее прочен, чем первый.

3. В случае изгибающего удара грузом Р, падающим с высоты h на середину балки, свободно лежащей на двух опорах (рис. ),

В этом случае динамический коэффициент [см. формулу (13.14)]

Наибольший изгибающий момент возникает в сечении посередине пролета балки:

Поперечная сила в сечениях балки

Переходя к расчету на удар с учетом массы упругой системы, подвергающейся удару, рассмотрим сначала случай, когда система обладает сосредоточенной массой (где - вес системы), расположенной в месте падения груза Р (рис. 10.14).

При этом будем различать три характерных момента.

1. Момент, непосредственно предшествующий соприкосновению груза Р с упругой системой, когда скорость груза Р равна v, а скорость массы равна нулю.

2. Момент соприкосновения груза Р с системой; при этом скорость с груза Р равна скорости движения упругой системы в месте удара.

3. Момент, когда упругая система получает наибольшее перемещение, а скорости груза Р и упругой системы равны нулю.

Скорость с определяется из условия, что при неупругом ударе количество движения до удара равно количеству движения после удара (см. курс теоретической механики), т. е.

(21.14)

Система под действием собственного веса Q еще до удара деформируется. Если - прогиб системы под силой Q, вызванный этой силой, то количество потенциальной энергии, накопленное системой до удара,

Обозначим А - наибольшее перемещение в месте падения груза Р, вызванное его ударным действием и силой

В момент времени, когда система получает такое перемещение, грузы Р и Q оказывают на систему наибольшее давление, равное где -динамический коэффициент, учитывающий вес груза Р, инерцию этого груза и инерцию груза Q. Рассматриваемому моменту времени соответствует наибольшее значение потенциальной энергии системы (кинетическая энергия в этот момент равна нулю, так как равны нулю скорости движения грузов Р и ):

где - потенциальная энергия системы до удара: кинетическая энергия груза и системы в момент их соприкосновения; - работа сил Р и Q на дополнительном перемещении (см. рис. 10.14) системы после удара.

Потенциальную энергию можно выразить также через силу и полное перемещение А [см. формулы (4.11) и (10.11]:

(23.14)

Приравняем друг другу выражения (22.14) и (23.14) и выразим в первом из них значение с через v [см. формулу (21.14)]. Тогда после некоторых преобразований

Обозначим прогиб системы под грузом Р от статического действия этого груза. Зависимость между перемещениями (от силы Q) и (от силы ) определяется формулами

Подставим эти выражения перемещений в уравнение (24.14) и преобразуем его:

Частицы системы, соприкасающиеся с грузом Р, после удара получают ту же скорость, что и груз остальные частицы после удара движутся с различными скоростями зависящими от положения частиц.

Для определения вызванных ударом наибольших динамических напряжений и перемещений с учетом массы упругой системы, так же как и при расчете без учета массы, напряжения и перемещения, найденные путем расчета системы на статическое действие силы Р, следует умножить на динамический коэффициент Прибавив к найденным значениям напряжения и деформации от собственного веса упругой системы (если по условию задачи их следует учитывать), получим полные напряжения и перемещения, возникающие при ударе.

На рисунке 5.1 показаны нагрузки, действующие на балку. Равномерно распределённая нагрузка интенсивностью q представляет собой собственный вес балки, а нагрузка p i – инерционные силы. Сила S (уси-

лие в тросе) равна по величине равнодействующей нагрузок q и p i направлена в противоположную сторону, т.е. уравновешивает эти нагрузки.

Инерционные силы p i возникают после включения двигателя крана

и вызывают изгиб балки (дополнительно к изгибу от действия собственного веса q . В результате изгиба различные сечения балки перемещаются

при подъеме с различными ускорениями a . Поэтому в общем случае интенсивность p i инерционной нагрузки переменна по длине балки.

В частных случаях, например когда жёсткость балки при изгибе весьма велика или когда сечение A , в котором балка прикреплена к тросу, поднимается на значительную высоту с постоянным ускорением, влиянием деформаций балки, вызванных инерционными силами p i на

величины ускорений a , можно пренебречь. В этих случаях можно считать, что ускорения всех сечений балки одинаковы и равны ускорению сечения i равномерно распределена по длине балки.

Аналогично и при решении ряда других динамических задач можно пренебрегать влиянием деформаций системы на распределение в ней ускорений, а следовательно, и на распределение инерционных сил.

В качестве примера рассмотрим расчёт вертикального бруса постоянного сечения, поднимаемого вверх силой S , превышающей вес бруса G (рис. 5.1). Кроме силы S на брус действуют равномерно распределённая по его длине вертикальная нагрузка интенсивностью q = G l от соб-

ственного веса бруса и инерционная нагрузка

pi = (q g ) a .

Ускорение a направлено в сторону действия силы S , т.е. вверх, величину его принимаем одинаковой для всех поперечных сечений бруса. Поэтому нагрузка p i равномерно распределена по длине бруса и направ-

лена в сторону, противоположную ускорению, т.е. вниз.

Составляем уравнение равновесия в виде суммы проекций всех сил на вертикальную ось x :

∑ X = S − G − p i i = 0 , откуда p i = (S − G ) / l .

Нормальное напряжение в поперечном сечении бруса, отстоящем на расстояние x от его нижнего конца,

σ = (q + p )

S − G

Наибольшее напряжение возникает в верхнем сечении бруса:

σ max = S .

5.3. РАСЧЁТ НА ПРОЧНОСТЬ ПРИ УДАРЕ

Под ударной понимается всякая быстроизменяющаяся нагрузка. При ударе различные точки системы получают некоторые скорости, так что системе придаётся кинетическая энергия, которая переходит в потенциальную энергию деформации конструкции, а также в другие виды энергии – прежде всего в тепловую.

При определении динамических допускаемых напряжений следует учитывать изменение механических характеристик материала. Однако ввиду недостаточной изученности этого вопроса расчёт на прочность при динамической нагрузке обычно ведут по статическим характеристикам, т.е. условие прочности имеет вид

σ дmax ≤ [ σ ] .

При ударе возникают местные деформации в зоне контакта и общие деформации системы. Условимся рассматривать только общие деформации системы, и предположим, что динамические напряжения не превосходят предела пропорциональности материала.

Для приближённого определения напряжений и перемещений сечений в момент наибольшей деформации системы в практических расчётах применяется энергетический метод, который применим в тех случаях, когда скорость ударяющего тела мала по сравнению со скоростью распространения ударной волны, а время соударения значительно больше времени распространения этой волны по всей системе.

Таким образом, простейшая теория удара основана на следующих допущениях:

1. Удар считается неупругим , т.е. ударяющее тело продолжает двигаться вместе с ударяемой конструкцией, не отрываясь от неё. Иными словами ударяющее тело и ударяемая конструкция имеют общие скорости после удара.

2. Ударяемая конструкция имеет лишь одну степень свободы , и вся масса конструкции сосредоточена в точке удара.

3. Рассеянием энергии в момент удара пренебрегают, считая, что вся кинетическая энергия ударяющего тела переходит в потенциальную энергию деформации ударяемой конструкции, движение которой происходит при отсутствии сил сопротивления.

4. Ударяемая конструкция считается идеально упругой .

Это означает, что зависимость между динамическими усилиями и ими вызванными перемещениями, точно так же подчиняется закону Гука, как и при статическом действии нагрузок (рис. 5.2).

Отношение динамических и статических перемещений называется коэффициентом динамичности или динамическим коэффициентом

δд

δ ст

В соответствии с законом Гука

σд

R ст

σ ст

где σ д # динамические напряжения; σ ст # статические напряжения.

R ст

δ ст

δд

5.4. ВЕРТИКАЛЬНЫЙ УДАР

Предположим, что груз массой m падает с некоторой высоты h на упругую систему, масса которой мала по сравнению с массой груза. Упругую систему будем считать невесомой (рис. 5.3, а , б ).

Груз в процессе падения выполняет работу

h + δд

где δ д – динамический прогиб системы (перемещение точки удара) в мо-

мент наибольшей деформации.

На рисунке 5.4 показано, что работа соответствует площади прямоугольника abde , так как величина веса груза Q в процессе удара не меняется.

Q = mg

Q = mg

δд

δд

h + δст

h + δд

Данная работа накапливается в системе в виде потенциальной энергии, которая равна работе внутренней силы R , вызывающей прогиб S при ударе. На рисунке 5.2 эта потенциальная энергия с учётом принятых выше допущений соответствует площади треугольника acd , так как сила R изменяется от нуля до конечного значения, равного R д , по линейному

закону. Таким образом, потенциальная энергия равна

R дδ д

Приравняв выражения (5.4) и (5.5), с учётом уравнений (5.2) и (5.3)

δ ст

а при Q = R ст

kд 2

δ ст

Решая квадратное уравнение относительно k д , получим

δ ст

Положительный знак перед радикалом взят потому, что искомыми являются наибольшие деформации. Если груз после удара остаётся на упругой системе, то при отрицательном знаке перед радикалом решение данного уравнения даёт наибольшее отклонение точки удара при возвратном движении.

После нахождения k д , по уравнениям (5.2), (5.3) могут быть опреде-

лены динамические напряжения и деформации системы, которые будут в k д раз больше тех, которые имели бы место в системе при статическом

приложении груза Q .

Заметим, что упругие свойства системы, как видно из формулы (5.7), смягчают удар и, наоборот, сила удара тем больше, чем больше жёсткость системы.

Частный случай ударного нагружения – внезапное приложение груза, когда h = 0. В этом случае k д = 2 и a д = 2a ст , δ д = 2δ ст , т.е. при внезапном приложении нагрузки напряжения и деформации системы в два раза больше, чем при статическом нагружении.

5.5. ВЕРТИКАЛЬНЫЙ УДАР ВСЛЕДСТВИЕ ВНЕЗАПНОЙ ОСТАНОВКИ ДВИЖЕНИЯ

Удар вследствие внезапной остановки движения возникает, например, в тросе лифта при внезапной остановке кабины или в балке, на которой закреплён груз Q при жёсткой посадке самолёта, имеющего верти-

кальную посадочную скорость (рис. 5.5).

Использовать формулу (5.7) для определения коэффициента динамичности нельзя, так как к моменту удара балка уже воспринимает статическую нагрузку Q . Кинетическая энергия движущейся вертикально кон-

струкции равна T = QV 2 / 2g , работа груза на дополнительном перемещении (δ д − δ ст ) − А = Q (δ д − δ ст ) (площадь прямоугольника cdef рис. 5.4).

Работа переходит в дополнительную потенциальную энергию деформации балки:

U = 1 (R д + R ст )(δ д − δ ст ) ,

соответствующей площади трапеции bcde на рис. 5.2. Приравнивая T + A = U с учётом уравнений (5.2), (5.3), получим квадратное уравнение:

V 2 + 2 (k д −1 ) = (k д + 1 )(k д −1 ) ,

g δ ст

решая которое, получим коэффициент динамичности при внезапной остановке движения:

k д = 1 +

g δ ст

δ ст δ д

5.6. ГОРИЗОНТАЛЬНЫЙ УДАР

Потенциальная энергия, накопленная в системе к моменту возникновения наибольшей деформации δ д , равна кинетической энергии системы

в момент соприкосновения с ней массы m (рис. 5.6):

T = mV 2 = U = R д δ д . 2 2

δд

С учётом уравнений (5.2) и (5.3), а также, принимая условно R ст = mg , получим

V 2 = kд 2 mgδ ст ,

откуда определяем коэффициент динамичности при горизонтальном ударе:

k д =

g δ ст

где δст – перемещение точки системы в месте приложения к ней статической силы mg .

5.7. СКРУЧИВАЮЩИЙ УДАР

Напряжения и деформации при ударном кручении определяются так же, как и при ударном растяжении (сжатии) или ударном изгибе. При ударном кручении применимы формулы для определения коэффициента динамичности (5.5), (5.7).

Например, при ударном скручивании вследствие резкого торможения быстро вращающегося вала, несущего маховик (рис. 5.9), кинетическая энергия T маховика переходит в потенциальную энергию U деформации вала:

Im ω 2

скорость

вращения

маховика;

I m = ∫∫ r 2 dm =

π 2

4 ρ t ∫ r 3 dr ∫ dϕ = ρ t

маховика;

dm = ρ trdrdϕ

– элементарная

m = ρ t

πD 2

маховика;

Q = mg –

вес маховика;

ρ – плотность материала маховика.

Потенциальная энергия деформации вала с учётом уравнений (5.2), (5.3):

U = M кр.дϕ д = k дM крϕ .

Так как угол закручивания при кручении вала круглого профиля равен

ϕ = M кр l ,

GI p

U = kд 2 M кр 2 l .

2 GI p

Приравнивая Т = U , после преобразований, получим формулу для определения коэффициента динамичности при скручивающем ударе :

GI p Im

М кр

GI p Im

ωD 2

Gtρ

ω lD2

GI p Im

Gtρ

GI p

6. УСТАЛОСТЬ

При эксплуатации машин и конструкций напряжения в их многочисленных элементах могут многократно изменяться как по величине, так и по направлению.

Детали, подвергающиеся воздействию переменных напряжений, разрушаются при напряжениях, значительно меньших значений предела прочности, а иногда и предела пропорциональности материала.

Явление разрушения под действием переменных напряжений называется усталостью материала.

Если значения переменных напряжений превышают некоторый предел, то в материале происходит процесс постепенного накопления повреждений, который приводит к образованию субмикроскопических трещин. Трещина становится концентратором напряжений, что способствует её дальнейшему росту. Это ослабляет сечение и в некоторый момент времени вызывает внезапное разрушение детали, которое нередко становится причиной аварий.

Процесс постепенного накопления повреждений под действием переменных напряжений, приводящий к изменению свойств материала, образованию трещин и разрушению детали, называется усталостным раз-

рушением (усталостью).

Испытания образцов на усталость проводятся на специальных установках. Наиболее простой является установка, предназначенная для испытаний на переменный изгиб с вращением при симметричном циклическом изменении напряжений.

6.1. РАСЧЁТ ВАЛА НА УСТАЛОСТНУЮ ПРОЧНОСТЬ

Проверочный расчёт вала на усталостную прочность учитывает все основные факторы, влияющие на усталостную прочность: характер изменения напряжений, абсолютные размеры вала, обработку поверхностей и прочностные характеристики материалов, из которых изготавливаются валы. Таким образом, перед расчётом вала на усталость необходимо полностью уточнить конструкцию вала.

Расчёт на выносливость заключается в определении действительных коэффициентов запаса усталостной прочности для выбранных предположительно опасных сечений и является поэтому уточнённо-проверочным.

Следует помнить, что при ступенчатой форме вала наличие концентраторов напряжений (таких как переход сечения с галтелями, напрессованные детали, шпоночные пазы, шлицы или зубья, отверстия, канавки, резьба и т.д.) опасным необязательно будет то сечение, где суммарный момент имеет наибольшую величину. Поэтому коэффициент запаса уста-

Удар - это происходящее в результате соприкосновения взаимодействие движущихся тел.

Удар – что характерно для него?

Удар характеризуется резким изменением скоростей частиц взаимодействующих тел за малый промежуток времени, при этом сила удара достигает очень большого значения. В качестве примера можно привести действие кузнечного молота на кусок металла, удар падающего груза при забивке свай, воздействие колеса вагона на рельс при перекатывании через стык.

Удар – допущения при расчете

За время совершения удара очень трудно произвести измерения, связанные с определением силы удара. Поэтому обычно производится условный расчет на удар , по которому определяются внутренние силы и перемещения, возникающие в стержне. Сначала определяется наибольшее динамическое перемещение точки стержня, по которой наносится удар, а затем определяется напряженное состояние стержня.

Существуют следующие допущения при расчете стержня на удар:

Допущение 1: деформация стержня, вызванная ударной нагрузкой, описывается законом Гука, а сам стержень является линейно деформируемой системой. При этом модуль Юнга имеет такое же значение, как и при статическом нагружении стержня;

Допущение 2: работа, совершаемая падающим грузом, полностью переходит в потенциальную энергию деформации стержня;

Допущение 3: масса стержня, воспринимающего удар, пренебрежимо мала по сравнению с массой падающего груза;

Допущение 4: удар считается неупругим.

Динамический прогиб при ударе

Рассмотрим удар груза весом G, падающего с высоты h на балку (рис. 13.3).

Обозначим – динамический прогиб балки в месте падения груза.

Работа, совершаемая падающим грузом, равна: . Согласно допущению 2 , работа полностью переходит в потенциальную энергию деформации балки (V). По теореме Клапейрона потенциальная энергия деформации равна половине произведения некоторой динамической силы () на соответствующее ей динамическое перемещение (): .

Учитывая, что статический прогиб балки в месте падения груза G, вызванный его статическим приложением, равен , получим уравнение динамического прогиба балки: . Отсюда .

Динамический прогиб балки в месте падения груза: , где – коэффициент динамичности. .

More meanings of this word and English-Russian, Russian-English translations for the word «ДИНАМИЧЕСКИЙ УДАР» in dictionaries.

  • УДАР — m. impact, blow, stroke, shock, thrust; упругий удар, elastic impact
  • ДИНАМИЧЕСКИЙ — adj. dynamic, power, forced; динамическая система, dynamical system
    Russian-English Dictionary of the Mathematical Sciences
  • УДАР — Collision
  • ДИНАМИЧЕСКИЙ — Dynamic
    Русско-Американский Английский словарь
  • УДАР — 1. (в разн. знач.) blow; stroke; воен. тж. thrust; (острым оружием) stab; (плетью) lash, …
  • ДИНАМИЧЕСКИЙ — dynamic(al)
    Англо-Русско-Английский словарь общей лексики - Сборник из лучших словарей
  • УДАР — body blow He has had a good many ups and downs in his life but his wife"s leaving him was …
  • ДИНАМИЧЕСКИЙ — ~ный dynamic dynamic
    Русско-Английский словарь общей тематики
  • УДАР — 1) beat 2) blow 3) impact 4) shock 5) физиол. stroke
    Новый Русско-Английский биологический словарь
  • УДАР — Impact
    Russian Learner"s Dictionary
  • УДАР — knock
    Russian Learner"s Dictionary
  • ДИНАМИЧЕСКИЙ — dynamic
    Russian Learner"s Dictionary
  • УДАР
    Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — dynamic(al)
    Русско-Английский словарь
  • УДАР — м. 1. (в разн. знач.) blow; stroke; воен. тж. thrust; (острым оружием) stab; (плетью) …
  • ДИНАМИЧЕСКИЙ — dynamic(al)
    Russian-English Smirnitsky abbreviations dictionary
  • УДАР — beat, blow, brunt, bump, clashing, crack, impulse, flap, hit, impact, impingement, kick, percussion, impact shock, shock, slap, stroke, thrust
  • ДИНАМИЧЕСКИЙ — dynamics, (о нагрузке) live
    Русско-Английский словарь по машиностроению и автоматизации производства
  • УДАР — муж. 1) (в разл. знач.) blow; воен. тж. thrust; (острым оружием) stab; (плетью) lash, slash; (ногой, копытом …
  • ДИНАМИЧЕСКИЙ — прил. dynamic
    Русско-Английский краткий словарь по общей лексике
  • УДАР — (механический) impulse, impact, knap, blow, cant, collision, shock, hit, jab, kick, knock, percussion, stroke, thrust
  • ДИНАМИЧЕСКИЙ — dynamic
    Русско-Английский словарь по строительству и новым строительным технологиям
  • УДАР — Collision
  • ДИНАМИЧЕСКИЙ — Vigorous
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Sprightly
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Peppy
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Go-ahead
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Dynamics
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Dynamic
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Bouncy
    Британский Русско-Английский словарь
  • УДАР — impulse, impulsion, kick, knock
  • ДИНАМИЧЕСКИЙ — dynamic
    Русско-Английский экономический словарь
  • УДАР — см. Размах на рубль — удар на копейку; см. Размах рублевый, удар фиговый
    Англо-Русско-Английский словарь сленга, жаргона, русских имен
  • УДАР — 1. blow (тж. перен.) (рубящий) chop; (колющий) stab, thrust; (столкновение) impact; (звук от толчка, сотрясения) crash, thud; ~ ногой kick; наносить ~ кому-л. deal*/strike* smb. a …
  • ДИНАМИЧЕСКИЙ — ~ный dynamic
    Русско-Английский словарь - QD
  • УДАР — blow
    Русско-Английский юридический словарь
  • УДАР — . Each impact of a molecule with (or on) a wall of the container ... . The impact …
    Русско-Английский научно-технический словарь переводчика
  • ДИНАМИЧЕСКИЙ — run-time
    Современный Русско-Английский словарь по машиностроению и автоматизации производства
  • УДАР — м. shock; beat; bump; knock - обратный удар
    Русско-Aнглийский автомобильный словарь
  • УДАР — impact
  • ДИНАМИЧЕСКИЙ — dynamic
    Русско-Английский толковый словарь терминов и сокращений по ВТ, Интернету и программированию
  • УДАР — m impact
    Russian-English WinCept Glass dictionary
  • УДАР — impact
    Русско-Английский биологический словарь
  • УДАР — муж. 1) (в различных значениях) blow воен. тж. thrust (острым оружием) stab (плетью) lash, slash (ногой, копытом) kick (кулаком) punch, …
  • ДИНАМИЧЕСКИЙ — прил. dynamic динамич|еский -, ~ный dynamic
    Большой Русско-Английский словарь
  • УДАР — удар nock;kick;hit
  • ДИНАМИЧЕСКИЙ — динамический dynamic
    Русско-Английский словарь Сократ
  • STROKE
  • STRIKE
    Большой Англо-Русский словарь
  • KICK
    Большой Англо-Русский словарь
  • DYNAMICIZER — I параллельно - последовательный преобразователь II устройство преобразования (данных) из статической формы в динамическую; динамический регистр dynamicizer вчт. динамический регистр
    Большой Англо-Русский словарь
  • DYNAMICAL — прил. динамический Syn: dynamic динамический - * test (техническое) испытание на удар динамичный; активный, энергичный; движущий; живой - * …
    Большой Англо-Русский словарь


top