Шпаргалка: Мышечные ткани. Виды мышечных тканей и их особенности Структурно функциональной единицей мышечной ткани является

Шпаргалка: Мышечные ткани. Виды мышечных тканей и их особенности Структурно функциональной единицей мышечной ткани является
СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ
ХАРАКТЕРИСТИКА СКЕЛЕТНОЙ
МЫШЦЫ И МЕХАНИЗМ ЕЕ
СОКРАЩЕНИЯ

Структурной единицей скелетной мышцы
является мышечное волокно - сильно вытянутая
многоядерная клетка.
Длина мышечного волокна зависит от размеров
мышцы и составляет от нескольких миллиметров
до нескольких сантиметров. Толщина волокна
варьирует от (10-100 мкм).
Типы мышц
В организме человека существует три типа
мышц:
скелетные, сердечные (миокард) и гладкие.
При микроскопическом исследовании в
скелетных и сердечной мышцах
обнаруживается исчерченностъ, поэтому их
называют поперечнополосатыми мышцами.

Скелетные мышцы прикреплены в основном к
костям, что и обусловило их название.
Сокращение скелетных мышц инициируется
нервными
импульсами
и
подчиняется
сознательному
контролю,
т.е.
осуществляется произвольно.
Сокращение гладких мышц инициируется
импульсами, некоторыми гормонами и не
зависит от воли человека.

Мышечное волокно окружено двухслойной
липопротеидной электровозбудимой мембраной сарколеммой,
которая
покрыта
сетью
коллагеновых волокон, придающих ей прочность и
эластичность.
В скелетных мышцах различают несколько типов
мышечных волокон: медленносокращающиеся
(МС) или красные и быстросокращающиеся
(БС) или белые.
Молекулярный механизм сокращения.
Скелетные мышцы содержат сократительные
белки:
актин
и
миозин.
Механизм
их
взаимодействия во время элементарного акта
мышечного
сокращения
объясняет
теория
скользящих нитей, разработанная Хасли и
Хансоном.

Строение мышечного волокна

Сарколемма – плазматическая мембрана покрывающая
мышечное волокно (соединяется с сухожилием, которое
прикрепляет мышцу к кости; сухожилие передает усилие
производимое мышечными волокнами кости и таким
образом
осуществляется
движение).
Сарколемма
обладает избирательной проницаемостью для различных
веществ и имеет транспортные системы, с помощью
которых поддерживается разная концентрация ионов
Na+, К+, а также Сl- внутри клетки и в межклеточной
жидкости, что приводит к возникновению на ее
поверхности мембранного потенциала - необходимого
условия возникновения возбуждения мышечного волокна.
Саркоплазма

желатиноподобная
жидкость,
заполняющая
промежутки
между
миофибриллами
(содержит
растворенные
белки,
микроэлементы,
гликоген, миоглобин, жиры, органеллы). Около 80%
объема волокна занимают длинные сократительные нити
- миофибриллы.

Система поперечных трубочек. Это сеть Т –
трубочек (поперечные), является продолжением
сарколеммы; они взаимосоединяются проходя
среди миофибрилл. Обеспечивают быструю
передачу нервных импульсов (распространение
возбуждения) внутрь клетки к отдельным
миофибриллам.
Саркоплазматический ретикулум (СР) – сеть
продольных трубочек, расположены параллельно
миофибриллам; это место депонирования Са2+,
который необходим для обеспечения процесса
мышечного сокращения.
Сократительные белки актин и миозин образуют
в миофибриллах тонкие и
толстые
миофиламенты.
Они
располагаются
параллельно друг другу внутри мышечной клетки
Миофибриллы
представляют
собой
сократимые элементы мышечного волокна пучки «нитей» (филаментов).

Структура миофибриллы:
1. Перегородки – называемые Z - пластинками,
разделяют их на саркомеры.
Структура саркомера:
В них видна последовательность регулярно
чередующихся поперечных светлых и темных
полос,
которая
обусловлена
особым
взаиморасположением
актиновых
и
миозиновых
филаментов
(поперечная
полосатость).
Середину саркомера занимают «толстые» нити
миозина. (А – диск темный)
На
обоих концах саркомера находятся
«тонкие» нити актина. (I- диск светлый)

Актиновые нити прикрепляются к Z –
пластинкам, сами Z – пластинки
ограничивают саркомер.
В покоящейся мышце концы тонких и
толстых
филаментов
лишь
слабо
перекрываются на границе между А и Iдисками.
Н – зона (светлее) в которой нет
перекрывания
нитей
(здесь
располагаются только миозиновые нити),
находится в диске А.
М - линия находится в центре саркомера
– место удержания толстых нитей
(построена из опорных белков.)

Теория скользящих нитей.

Укорочение саркомера:
Мышца сокращается в результате укорочения множества
последовательно соединенных саркомеров в
миофибриллах.
Во время сокращения тонкие актиновые филаменты
скользят вдоль толстых миозиновых, двигаясь между ними
к середине их пучка и саркомера.
Основное положение теории скользящих нитей:
Во время сокращения мышцы, сами актиновые и
миозиновые нити не укорачиваются (ширина А – диска
всегда остается постоянной, тогда как I- диски и Н – зоны
при сокращении сужаются).
Длинна нитей не меняется при растяжении мышцы (тонкие
филаменты вытягиваются из промежутков между толстыми
нитями, так что степень перекрывания их пучков
уменьшается).

10. Работа поперечных мостиков.

Движение головок создает объединенное усилие,
как бы «гребок», продвигающий актиновые нити к
середине саркомера. Только за счет ритмичных
отделений и повторных прикреплений миозиновых
головок актиновая нить может подтягиваться к
середине саркомера.
При расслаблении мышцы миозиновые головки
отделяются от актиновых нитей.
Так как актиновые и миозиновые нити могут легко
скользить друг относительно друга, сопротивление
расслабленных мышц растяжению очень низкое.
Удлинение мышцы во время расслабления носит
пассивный характер.

11. Преобразование химической энергии в механическую.

АТФ – непосредственный источник энергии для
сокращения.
При сокращении мышцы АТФ расщепляется на
АДФ и фосфат.
Ритмическая активность поперечных мостиков, т.
е. циклы их прикрепления к актину и отсоединения
от него, обеспечивающие мышечное сокращение,
возможны только при гидролизе АТФ, а
соответственно и при активации АТФазы, которая
непосредственно участвует в расщеплении АТФ на
АДФ и фосфат.

12. Молекулярный механизм мышечного сокращения.

Сокращение запускается нервным импульсом. При этом в
синапсе - месте контакта нервного окончания с
сарколеммой выделяется медиатор (нейропередатчик) ацетилхолин.
Ацетилхолин (Ах) вызывает изменение проницаемости
мембраны для некоторых ионов, что в свою очередь
приводит к возникновению ионных токов и сопровождается
деполяризацией мембраны. В следствии чего, на ее
поверхности возникает потенциал действия или она
возбуждается.
Потенциал
действия
(возбуждение)
распространяется вглубь волокна через Т-системы.
Нервный импульс вызывает изменение проницаемости
мембраны саркоплазматического ретикулума и приводит к
освобождению
ионов
Са2+
из
пузырьков
саркоплазматического ретикулума.

13. Электромеханическое сопряжение

Передача команды к сокращению от
возбужденной клеточной мембраны к
миофибриллам
в
глубине
клетки
(электромеханическое
сопряжение)
включает
в
себя
несколько
последовательных процессов, ключевую
роль в которых играют ионы Са2+.

14.

1. Электромеханическое сопряжение происходит
посредством распространения потенциала
действия по мембранам поперечной системы
внутрь клетки, потом возбуждение проходит на
продольную систему (ЭПР) и вызывает
высвобождение депонированного в мышечной
клетке Са2+ во внутриклеточное пространство,
которое окружает миофибриллы. Это и приводит к
сокращению
2. Са2+ удаляется из внутриклеточного пространства
в депо (каналы ЭПР) за счет работы кальциевых
насосов на мембранах ЭПР.
3. Только за счет электрической передачи по
поперечной системе, возможна быстрая
мобилизация запасов кальция в глубине волокна, и
только этим можно объяснить очень короткий
латентный период между стимулом и
сокращением.

15.

Функциональная роль АТФ:
- в покоящейся мышце - препятствует соединению
актиновых нитей с миозиновыми;
- в процессе сокращения мышцы - поставляет
необходимую энергию для движения тонких нитей
относительно толстых, что приводит к укорочению
мышцы или развитию напряжения;
- в процессе расслабления - обеспечивает энергией
активный транспорт Са2+ в ретикулум.

16. Типы мышечных сокращений. Оптимум и пессимум мышечного сокращения

В зависимости от изменения длины мышечного волокна
выделяют два типа его сокращения - изометрическое и
изотоническое.
Мышечное сокращение при котором длина мышцы
уменьшается по мере развиваемой ею силы, называется
ауксотоническим.
Максимальная сила при ауксотонических экспериментальных
условиях (с растяжимой упругой связью между мышцей и
датчиком силы) называется максимумом ауксотонического
сокращения. Она гораздо меньше силы, которую развивает
мышца при постоянной длине, т.е. при изометрическом
сокращении.
Сокращение мышцы, при котором ее волокна укорачиваются
при неизменном напряжении, называется изотоническим.
Сокращение мышцы, при котором ее напряжение возрастает
а длина мышечных волокон остается неизменной,
называется изометрическим

17.

Мышечная работа равна произведению
расстояния (укорочения мышцы) на вес груза,
который поднимает мышца.
При изотонической тетанической активации
мышцы от нагрузки зависит величина укорочения и
скорость укорочения мышцы.
Чем меньше нагрузка, тем больше укорочений в
единицу времени. Ненагруженная мышца
укорачивается с максимальной скоростью, которая
зависит от типа мышечных волокон.
Мощность мышцы равна произведению
развиваемой ею силы на скорость укорочения

18.

Расслабленная мышца, сохраняющая «длину покоя» за счет
фиксации обоих ее концов, не развивает силу, которая
передавалась бы на датчик. Но если потянуть за один ее
конец, чтобы волокна растянулись, в ней возникает
пассивное напряжение. Таким образом, мышца в состоянии
покоя упруга. Модуль упругости покоящейся мышцы с
растяжением возрастает. Эта упругость обусловлена главным
образом растяжимыми структурами, которые располагаются
параллельно
относительно
растяжимых
миофибрилл
(«параллельная
упругость»)
.
Миофибриллы
в
расслабленном состоянии практически не оказывают
сопротивления растяжению; актиновые и миозиновые нити, не
связанные
поперечными
мостиками,
легко
скользят
относительно друг друга. Степень предварительного
растяжения определяет величину пассивного напряжения
покоящейся мышцы и величину дополнительной силы,
которую может развить мышца в случае активации при данной
длине.

19.

Пиковое усилие при таких условиях называется
максимумом изометрического сокращения.
При сильном растяжении мышцы, сила сокращения
уменьшается т. к. нити актина вытянуты из
миозиновых пучков и соответственно, меньше зона
перекрывания этих нитей и возможность
формирования поперечных мостиков.
При очень сильном растяжении мышцы, когда
актиновые и миозиновые нити перестают
перекрываться, миофибриллы не способны
развивать силу. Это доказывает, что мышечная сила
представляет собой результат взаимодействия
актиновых и миозиновых филаментов (т. е.
образования между ними поперечных мостиков).
В естественных условиях сокращения мышц
являются смешанными - мышца обычно не только
укорачивается, но изменяется и ее напряжение.

20.

В зависимости от длительности выделяют
одиночное и тетаническое сокращения мышцы.
Одиночное сокращение мышцы в эксперименте
вызывают одиночным раздражением электрическим
током. В изотоническом режиме одиночное
сокращение начинается через короткий скрытый
(латентный) период, далее следует фаза подъема
(фаза укорочения), затем фаза спада (фаза
расслабления) (рис. 1). Обычно мышца
укорачивается на 5-10% исходной длины.
Длительность ПД мышечных волокон также
варьирует и составляет 5-10 мс с учетом замедления
фазы реполяризации.
Мышечное волокно подчиняется закону «все или
ничего», т.е. отвечает на пороговое и
сверхпороговое раздражение одинаковым по
величине одиночным сокращением.

21.

Сокращение целой мышцы зависит:
1. от силы раздражителя при непосредственном раздражении
мышцы
2. от числа нервных импульсов, поступающих к мышце при
раздражении нерва.
Увеличение силы раздражителя ведет к увеличению числа
сокращающихся мышечных волокон.
Подобный эффект наблюдается и в естественных условиях - с
увеличением числа возбужденных нервных волокон и частоты
импульсов (к мышце поступает больше нервных импульсов ПД) увеличивается число сокращающихся мышечных волокон.
При одиночных сокращениях мышца утомляется
незначительно.
Тетаническое сокращение - это слитное длительное
сокращение скелетной мышцы. В его основе лежит явление
суммации одиночных мышечных сокращений.
Кривая одиночного
сокращения икроножной
мышцы лягушки:
1-латентный период,
2- фаза укорочения,

22.

При нанесении на мышечное волокно или
непосредственно
на
мышцу
двух
быстро
следующих друг за другом раздражений,
возникающее
сокращение
имеет
большую
амплитуду и длительность. При этом нити актина и
миозина дополнительно скользят друг относительно
друга. В сокращение могут вовлекаться ранее не
сокращавшиеся мышечные волокна, если первый
стимул вызвал у них подпороговую деполяризацию,
а второй увеличивает ее до критической величины.
Суммация сокращений при повторном раздражении
мышцы или поступлении к ней ПД возникает только
в том случае, когда закончен рефрактерный период
(после исчезновения ПД мышечного волокна).

23.

При поступлении импульсов к мышце во время ее
расслабления возникает зубчатый тетанус, во
время укорочения - гладкий тетанус (рис.).
Амплитуда тетануса больше величины
максимального одиночного сокращения мышцы.
Напряжение, развиваемое мышечными волокнами
при гладком тетанусе, обычно в 2-4 раза больше,
чем при одиночном сокращении, однако мышца
быстрее утомляется. Мышечные волокна не
успевают восстановить энергетические ресурсы,
израсходованные во время сокращения.
Амплитуда гладкого тетануса увеличивается с
возрастанием частоты стимуляции нерва. При
некоторой (оптимальной) частоте стимуляции
амплитуда гладкого тетануса наибольшая (оптимум частоты раздражения)

24.

Рис. Сокращения икроножной мышцы лягушки при
увеличении частоты раздражения седалищного нерва
(ст/с - стимулов в секунду): а - одиночное сокращение;
б-д - накладывание волн сокращения друг на друга и
образование разных видов тетанического сокращения.
При частоте 120 ст/с - пессимальный эффект
(расслабление мышцы во время стимуляции) – е

25.

При чрезмерно частой стимуляции нерва (более 100
имп/с) мышца расслабляется вследствие блока
проведения возбуждения в нервно-мышечных
синапсах - пессимум Введенского (пессимум
частоты раздражения). Пессимум Введенского можно
получить и при прямом, но более частом раздражении
мышцы (более 200 имп/с) . Пессимум Введенского не
является результатом утомления мышцы или истощения медиатора в синапсе, что доказывается фактом
возобновления сокращения мышцы сразу же после
уменьшения частоты раздражения. Торможение
развивается в нервно-мышечном синапсе при
раздражении нерва.
В естественных условиях мышечные волокна
сокращаются в режиме зубчатого тетануса или
даже одиночных последовательных сокращений.

26.

Однако форма сокращения мышцы в целом
напоминает гладкий тетанус.
Причины
этого
асинхронность
разрядов
мотонейронов и асинхронность сократительной
реакции отдельных мышечных волокон, вовлечение
в сокращение большого их количества, вследствие
чего мышца плавно сокращается и плавно
расслабляется, может длительно находиться в
сокращенном состоянии за счет чередования
сокращений множества мышечных волокон. При
этом мышечные волокна каждой двигательной
единицы сокращаются синхронно.

27.

Функциональная единица мышцы –
двигательная единица
Понятия. Иннервация скелетных мышечных волокон
осуществляется мотонейронами спинного мозга или
мозгового ствола. Один мотонейрон веточками своего
аксона иннервирует несколько мышечных волокон.
Совокупность мотонейрона и иннервируемых им
мышечных волокон называют двигательной
(нейромоторной) единицей. Число мышечных
волокон двигательной единицы варьирует в широких
пределах в разных мышцах. Двигательные единицы
невелики в мышцах, приспособленных для быстрых
движений, от нескольких мышечных волокон до
нескольких десятков их (мышцы пальцев, глаза,
языка). Наоборот, в мышцах, осуществляющих
медленные движения (поддержание позы мышцами
туловища), двигательные единицы велики и включают
сотни и тысячи мышечных волокон

28.

При
сокращении
мышцы
в
натуральных
(естественных) условиях можно зарегистрировать
ее электрическую активность (электромиограмму ЭМГ) с помощью игольчатых или накожных электродов. В абсолютно расслабленной мышце
электрическая активность почти отсутствует. При
небольшом
напряжении,
например
при
поддержании
позы,
двигательные
единицы
разряжаются с небольшой частотой (5-10 имп/с),
при большом напряжении частота импульсации
повышается в среднем до 20-30 имп/с. ЭМГ позволяет судить о функциональной способности
нейромоторных единиц. С функциональной точки
зрения двигательные единицы разделяют на
медленные и быстрые.

29.

мотонейроны и медленные мышечные волокна (красные).
Медленные мотонейроны, как правило, низкопороговые, так
как обычно это малые мотонейроны. Устойчивый уровень
импульсации у медленных мотонейронов наблюдается уже
при очень слабых статических сокращениях мышц, при
поддержании позы. Медленные мотонейроны способны
поддерживать длительный разряд без заметного снижения
частоты импульсации на протяжении длительного времени.
Поэтому их называют малоутомляемыми или
неутомляемыми мотонейронами. В окружении медленных
мышечных волокон богатая капиллярная сеть, позволяющая
получать большое количество кислорода из крови.
Повышенное содержание миоглобина облегчает транспорт
кислорода в мышечных клетках к митохондриям. Миоглобин
обусловливает красный цвет этих волокон. Кроме того,
волокна содержат большое количество митохондрий и
субстратов окисления - жиров. Все это обусловливает использование медленными мышечными волокнами более
эффективного аэробного окислительного пути

30.

Быстрые двигательные единицы состоят из
быстрых мотонейронов и быстрых мышечных
волокон. Быстрые высокопороговые мотонейроны
включаются в активность только для обеспечения
относительно больших по силе статических и
динамических сокращений мышц, а также в начале
любых сокращений, чтобы увеличить скорость
нарастания напряжения мышцы или сообщить
движущейся части тела необходимое ускорение. Чем
больше скорость и сила движений, т. е. чем больше
мощность сократительного акта, тем больше участие
быстрых двигательных единиц. Быстрые
мотонейроны относятся к утомляемым - они не
способны к длительному поддержанию
высокочастотного разряда

31.

Быстрые мышечные волокна (белые мышечные
волокна) более толстые, содержат больше
миофибрилл, обладают большей силой, чем
медленные волокна. Эти волокна окружает меньше
капилляров, в клетках меньше митохондрий,
миоглобина и жиров. Активность окислительных
ферментов в быстрых волокнах ниже, чем в
медленных, однако активность гликолитических
ферментов, запасы гликогена выше. Эти волокна не
обладают большой выносливостью и более
приспособлены для мощных, но относительно
кратковременных сокращений. Активность быстрых
волокон имеет значение для выполнения
кратковременной высокоинтенсивной работы,
например бега на короткие дистанции

32.

Скорость сокращения мышечных волокон находится
в прямой зависимости от активности миозин-АТФ-азы
- фермента, расщепляющего АТФ и тем самым
способствующего образованию поперечных мостиков
и взаимодействию актиновых и миозиновых
миофиламентов. Более высокая активность этого
фермента в быстрых мышечных волокнах
обеспечивает и более высокую скорость их
сокращения по сравнению с медленными волокнами
Тонус – слабое общее напряжение мышц
(развивается при очень низкой частоте стимуляции).
Сила и скорость сокращения мышц зависит от
количества вовлеченных в сокращение двигательных
единиц (чем больше двигательных единиц
активировано – тем сильнее сокращение).
Рефлекторный тонус - (наблюдается у некоторых
групп позных мышц) состояние непроизвольного
устойчивого напряжения мышц

33.

КПД мышцы
Во время активации мышцы повышение
внутриклеточной концентрации Са 2+ ведет к
сокращению и к усиленному расщеплению АТФ; при
этом интенсивность метаболизма мышцы возрастает
в 100-1000 раз. Согласно первому началу
термодинамики (закону сохранения энергии),
химическая энергия, высвобождаемая в мышце,
должна быть равна сумме механической энергии
(мышечной работы) и теплообразования

34.

Коэффициент полезного действия.
Гидролиз одного моля АТФ дает 48 кДж энергии,
40 –50% - превращается в механическую работу, а
50-60% рассеивается в виде тепла при запуске
(начальная теплота) и во время сокращения
мышцы, температура которой при этом
повышается. Однако в естественных условиях
механический КПД мышц около 20-30% так как во
время сокращения и после него процессы
требующие затрат энергии, идут и вне
миофибрилл (работа ионных насосов,
окислительная регенерация АТФ – теплота
восстановления)

35.

Энергетический
метаболизм
.
Во
время
продолжительной
равномерной
мышечной
активности происходит аэробная регенерация АТФ за
счет
окислительного
фосфорильирования.
Необходимая для этого энергия выделяется в
результате окисления углеводов и жиров. Система
находится в состоянии динамического равновесия –
скорости образования и расщепления АТФ равны.
(внутриклеточные
концентрации
АТФ
и
креатинфосфата относительно постоянны) При
продолжительных спортивных нагрузках скорость
расщепления АТФ в мышцах возрастает в 100 или в
1000 раз. Продолжительная нагрузка возможна если
скорость
восстановления
АТФ
возрастает
соответственно расходу. Потребление кислорода
мышечной тканью возрастает в 50-100 раз;
повышается скорость расщепления гликогена в
мышцах.

36.

Анаэробное расщепление – гликолиз: АТФ образуется в 2-3
раза быстрее, а механическая энергия мышцы в 2-3 раза
выше, чем при длительной работе, обеспечиваемой
аэробными механизмами. Но ресурсы для анаэробного
метаболизма быстро исчерпываются, продукты метаболизма
(молочная кислота) вызывают метаболический ацидоз.,
который ограничивает работоспособность и вызывает
утомление. Анаэробные процессы необходимы для
обеспечения энергией кратковременного экстремального
усилия, а так же в начале продолжительной мышечной
работы, потому что адаптация скорости окисления (и
гликолиза) к возросшей нагрузке требует некоторого времени.
Кислородная задолженность приблизительно соответствует
количеству энергии, полученному анаэробным путем, еще не
компенсированное за счет аэробного синтеза АТФ.
Кислородная задолженность обусловлена(анаэробным)
гидролизом креатинфосфата, может достигать 4 л и может
увеличиваться до 20 л. Часть лактата окисляется в миокарде
а часть(преимущественно в печени) используется для синтеза
гликогена.

37.

Соотношение быстрых, и медленных волокон. Чем
больше быстрых волокон содержит мышца, тем больше
возможная ее сила сокращения.
Поперечное сечение мышцы.
Термины «абсолютная» и «относительная» сила мышцы:
«общая сила мышцы» (определяется максимальным
напряжением в кг, которое она может развить) и «удельная
сила мышцы» - отношение этого напряжения в кг к
физиологическому поперечному сечению мышцы (кг/см2).
Чем больше физиологическое поперечное сечение мышцы,
тем больший груз она в состоянии поднять. По этой причине
сила мышцы с косо расположенными волокнами больше
силы, развиваемой мышцей той же толщины, но с
продольным расположением волокон. Для сравнения силы
разных мышц максимальный груз, который они в состоянии
поднять, делят на плошадь их физиологического поперечного
сечения (удельная сила мышцы). Вычисленная таким образом
сила (кг/см2) для трехглавой мышцы плеча человека - 16,8,
двуглавой мышцы плеча - 11,4, сгибателя плеча - 8,1,
икроножной мышцы - 5,9, гладких мышц - 1 кг/см2.

38.

В различных мышцах тела соотношение между
числом медленных и быстрых мышечных волокон
неодинаково, поэтому и сила их сокращения, и
степень укорочения вариабельны.
При снижении физической нагрузки - особенно
большой интенсивности, при которой требуется
активное участие быстрых мышечных волокон, последние истончаются (гипотрофируются) быстрее,
чем медленные волокна, быстрее уменьшается их
число
Факторы, влияющие на силу сокращения мышцы.
Число сокращающихся волокон в данной мышце. С
увеличением сокращающихся волокон возрастает
сила сокращений мышцы в целом. В естественных
условиях сила сокращения мышцы возрастает с
увеличением нервных импульсов, поступающих к
мышце,
в эксперименте - с увеличением силы раздражения.

39.

Умеренное растяжение мышцы также ведет к
увеличению ее сократительного эффекта. Однако
при чрезмерном растяжении сила сокращения
уменьшается. Это демонстрируется в опыте с
дозированным растяжением мышцы: мышца
перерастянута так, что нити актина и миозина не
перекрываются, то общая сила мышцы равна нулю.
По мере приближения к натуральной длине покоя,
при которой все головки миозиновых нитей способны
контактировать с актиновыми нитями, сила
мышечного сокращения вырастает до максимума.
Однако при дальнейшем уменьшении длины
мышечных волокон из-за перекрытия нитей актина и
миозина сила сокращения мышцы снова
уменьшается вследствие уменьшения возможной
зоны контакта нитей актина и миозина.

40.

Функциональное состояние мышцы.
При утомлении мышцы величина ее сокращения
снижается.
Работа мышцы измеряется произведением
поднятого груза на величину ее укорочения.
Зависимость мышечной работы от нагрузки
подчиняется закону средних нагрузок. Если мышца
сокращается без нагрузки, ее внешняя работа равна
нулю. По мере увеличения груза работа
увеличивается, достигая максимума при средних
нагрузках. Затем она постепенно уменьшается с
увеличением нагрузки. Работа становится равной
нулю при очень большом грузе, который мышца при
своем сокращении не способна поднять напряжение
100-200 мг.

41.

ГЛАДКАЯ МЫШЦА.
Гладкая мускулатура не имеет поперечную
исчерченность. Клетки в виде веретен соединены
особыми межклеточными контактами (десмосомами).
Скорость скольжения миофибрилл и расщепления АТФ
ниже в 100-1000 раз. Хорошо приспособлены для
длительного устойчивого сокращения, которое не
приводит к утомлению и значительным энергозатратам.
Способны к спонтанным тетанообразным сокращениям,
которые имеют миогенное происхождение, а не
нейрогенное как у скелетных мышц.
Миогенное возбуждение.
Миогенное возбуждение возникает в клетках
ритмоводителях (пейсмекерах), которые обладают
электрофизиологическими свойствами.
Пейсмекерные потенциалы деполяризуют их мембрану
до порогового уровня, вызывая потенциал действия. Са
2+ поступает в клетку – мембрана деполяризуется, потом

42.

Спонтанную активность пейсмекеров можно модулировать
вегетативной нервной системой и ее медиаторами
(ацетилхолин усиливает активность приводя к более частым и
сильным сокращениям, а норадреналин оказывает
противоположное действие).
Возбуждение распространяется через «щелевые контакты»
(нексусы) между плазматическими мембранами
сопредельных мышечных клеток. Мышца ведет себя как
единая функциональная единица, синхронно воспроизводя
активность своего пейсмекера. Гладкая мышца может быть
полностью расслаблена как в укороченном так и в растянутом
состоянии. Сильное растяжение активирует сокращение.
Электромеханические сопряжение. Возбуждение
гладкомышечных клеток вызывает либо увеличение входа Са
через потенциалзависимые кальциевые каналы, либо
высвобождает из кальциевых депо, что в любом случае
приводит к возрастанию внутриклеточной концентрации
кальция и вызывает активацию сократительных структур.
Расслабление идет медленно т.к. скорость поглощения ионов
Са очень низкая.

Скелетная мышечная ткань.

Имеет неклеточное строение. Представлена клетточным производным - миосимпластом или мышечным волоком. Это ограничено плазмолемой очень длинный плазматический тяж, содержащий большое количество ядер. Образуется при слиянии эмбрионных одноядерных клеток после того, как они достигли определенной степени дифференцировки. Эти клетки - *миобласты* сливаются друг с другом, образуя тонкие мышечные трубочки. С этого момента их ядра делиться тогут. Начинается быстрый синтез сократительных волокон и их построение.

Многим структурным клеткам при навании дают приставку Сарко. Мяж покрыт плазмолеммой и сверху еще базальной мембраной, которая построена из фибрилл и аторфного вещества, Сарколемма состоит из плазмолеммы и базальной мембраны. Между базальной мембраной и плазмолемой кое-где одноядерные клетки - миосателлиты. Это камбиальные кл., кот. В отличие от ядер симпласта могут делиться, образуя единственный источник пополнения ядер в симпласте.

М.о. мышечное волокно - это клеточно - симпластический комплекс (симпласт + сателлит). Являются структурной и функциональной единицей скелетной мышечной ткани.

Длина волонка может достигать нескольких десятков сантиметров. Наружная мембрана содержит волокна, тестно спаеные эндомизием. Это рыхлые прослойки соединительной ткани, которые окружают каждое волокно. Эндомизий регулирует питание, обмен и фунционирование волокна. Выделяют еще перимизий - одевает пучок волокон. Сверху мышца заключена в эпимизий, который соответствует фасции мышцы.

В переднем отделе мышечного тракта мышечная ткань не переходит на органный уровень (нет эпимизия).

Кроме трофической функции обеспечивается фиксация мышечной ткани к сухожилию или хрящу. Ядра оттеснены на переферию, т.к. вся масса клеток буквально забита миофибриллами, они ориетированы продольно продольная исчерченность. Поперечная исчерченность чередование темных и светлых полосок, которые видны только в расслабленом состоянии образует поперечную исчерченность мышечной ткани.

ПРИРОДА ПОПЕРЕЧНОЙ ИСЧЕРЧЕННОСТИИ

Каждая миофибрилла имеет много миофиламентов. Тонкие нити - актиновые филаменты из глобулярного белка актина. Имеют также регуляторные белки тропамин и пропамиазин между ними. Толстые миофиламенты - миозиновые - фибрилярный белок. Имеет фибрилярный хвостик, стержень, на одном конце имеет головку, которая может изменять угол наклона. По этой окружности всегда распологаются выступающие 6 головок (распологающиеся паралельно друг другу, головки выступают). Актиновые и миозиновые нити располагаются строго друг над другом. Нити прошнурованы специальным белком, который выполняет структурную функцию. Прошнурованные места рассматриваются на светооптическом уровне.

Актиновые нити соединены по Z лини или телофрагмы, миозиновые - по M линии мезофрагмы.

Участок, в состав которого только входят актиновые нити составляет простое лучепреломление, образуя I - диск (изотропное лучепреломление). Между ними находится А - диски (анихотропное)- обладает 2-ым лучепреломлением. Н-диск посредине М. Расстояние между 2-мя Z-линиями называется саркомером.

При сокращении мышечного волокна уменьшается граница каждого саркомера. В основе сокращения - механихм скольжения нитей друг относительно друга. Хадвигание миофибрилл друг за друга происходит за счет движений веслообразных головок миозина. Если волоко расслаблено, скольжение не происходит, т.к. регулирующий белок не позволяют прикоснуться к актиновым нитям.

Для сокращения нужно снять блок; 2 условия:

1) высокая концентация ионов Ca в окружающей гиалоплазме. ионы Ca еще и стимулируют АТФ- активность обесечивая для головок энергией.

2) Специфичный мембрранный аппарат волокна, который включает в себя Т-систему и саркоплазматическую сеть.

Т-система - это производное наружной мембраны, т.е. плазмолеммы. От плазмолеммы с очень постоянным интервалами вглубь волокна отходят трубчатые каналы, располагающиеся паралельно пронизывающего его волокна поперек. Когда такая трубочка натыкается на миофибриллу - она раздваивается, образуя колечка и т.д. Это колечко приходится на определенное пространство (место контакта актин и миозизовых нитей). Т-система обеспечивает мнговенное и одновременное проведение возбуждения от плазмолемы к каждому саркомеру. Изначально возбуждение идет от нервной клетки. Аксон разветвляется на поверхности мембраны мышечного волокна образуя медиатор, связ. с рецепторами плазмолеммы.

Саркоплазматическая сеть - гладкая ЭПС. В мышечных клетках депо кальция. Ca2+ спрятан, нужен его выброс.

Каждая миофибрилла снаружи упакована сокоплазматической сетью.

В каждой триаде Т-трубочек очень близко подходит к мышечной саркоплазматической сети. Нервные импульсы меняют состояние саркоплазматической мембраны.Дальше в ней открываются мембранные кольцевые каналы, далее Са2+ выходит наружу из гладкой ЭПС.

При прекращении нервного импульса Са2+ перекакачивается обратно в терминальные цистерны, в итоге мышца расслабляется.

По характеру сокращение сердечной мышечной ткани является тетанической (быстро сокращается и расслабляется).

ТРОФИЧЕСКИЙ АППАРАТ МЫШЕЧНОГО ВОЛОКНА.

Многочисленные ядра, которые которые обеспечивают постоянный синтез сократительных белков.

Свободные рибосомы, много митохондрий - длинными рядами между миофибрилл (обычно вытянутой формы). Характерно наличие включений: гликоген миоглобин. Миоглобин- пигментное включение имеет красный цвет.

СНАБЖЕНИЕ МЫШЦ КИСЛОРОДОМ,

Гликоген материал для получения АТФ по гликолитическому пути.

В момент сокращения снабжается кислородом прекращается. Запас кислорода надолго не хватает. Толстые волокна - белые(использование АТФ синтезв анаэробных условиях), но они не способны к длительной работе.Их противоположность- красные волокна(тонкие), многт миоглобина. Долго и интенсивно работают.

Мышечные волокна состоят из миофибрилл, а миофибриллы из саркамеров - поперечно- мышечной ткани- структурной единицей.

Структурная единица сердечной мышцы - кардиомиоциты, которые связаны друг с другом межклеточными контактами следовательно бысторе со\кращение.

Область соединения кардиомиоцитов- вставочные диски.

ПРОВОДЯЩАЯ СИСТЕМА СЕРДЦА.

Водители ритма- сами без внешних импульсов с определенной частотой сокращаются. Возбуждение мембраны передается по всей проводящей системе.

ВОДИТЕЛИ РИТМА 1-го ПОРЯДКА- синусно-предсердечный узел- производное клеток синусных кардиомиоцитов.Это небольшие небольшие клетки- мало миофибрилл, главное отличие- непостоянный потенциал покоя, т.е. у них все время через мембрану идет медленное протекание ионов следовательно возбуждение где-то 70 уд.мин.

Проводящая система- быстрая передача имп. до рабочих кардиомиоцитов.

ВОДИТЕЛИ РИТМА 2-го ПОРЯДКА- атриовентрикулярный узел скорость примерно 30-40 сокращ. в мин.(недостаточно для нормальной жизнедеятельности) Подчиняется 1-му водителю ритма.

ВОДИТЕЛИ РИТМА 3-го ПОРЯДКА- пучок Гисса - еще более низкая частота регуляции сердечного ритма.

Промежуточные кардиомиоциты очень большие (волокна Пуркинье). Задача - как можно большему скор. кл. передать возбуждение.

Помимо автоматики сердечные сокращения - нервная регуляция (блуждающий нерв); симпатические и парасимпатические волокна (ускоряют и урежают скорость сокращений. Сужествует ряд гумар-ых факторов.

Так секреторные кардиомиоциты в области ушек сердца выделяют биологически активные вещества(натриоуретический фактор), которые направлены на регуляцию водного и натриевого обменна следовательно влияние на кровяное давление.

ОБЩИЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ НЕЙРАЛЬНЫХ ТКАНЕЙ И НЕРВНОЙ СИСТЕМЫ.

Нервная ткань состоит в основном из клеток, межклеточного вещества мало.

КЛАССИФИКАЦИЯ НЕРВНЫХ КЛЕТОК.

1. Нервные клетки, или нейроны, которые обеспечивают специфические функции- проведение и передача возбуждения.

2. Клетки нейролгии или гинальные клетки, вспомогательные (трофическая функция).

За небольшим исключением образовываются из нервной трубки.Клетки нервной трубки - мдунобласты- которые на ранних этапах эмбриогинеза диф. на 2 направления:

Нейробласты следовательно нейроны

Спонгиобласты следовательно нейрогии

Нейроны - их главная функция- проведение или передача возбуждения.

Строение - Клетки разных размеров, которые имеют тело называются перикарион, центрально расположены, крупное ядро, и большее или меньшее отростков.

Отростки делятся на 2 типа:

Аксон(нейрит(- всегда 1. От тела к окончанию аксона возбуждение

Дентриты- возбуждение к телу нервных клеток, различное

Если все органеллы общего назначения, даже клеточный центр и специф. структура- базофильное в-во - это гранулы или мелкие зерна, расположенные в цитоплазме вокруг ядра. Это скопление гранулярной ЭПС (для выработки индиатора сл-но скорости ЭПС.) Спецификой в разных типах нейронов называется также основное в-во или тигроид.

Органеллы специального назначения- нейрофибриллы - длинные нити из нейрофиламентов и микротрубочек.

Они построены из фибрилярных белков и расположены в аксонах н.кл.Обеспечивают быстрый перенос медиатора к окончанию длинного отростка аксона(быстрый ток аксоплазмы).

Для нейронов характерен особый вид межклеточных контактов- синапс- также обеспечивает проведение возбуждения в одну сторону.

Массовый выброс содержимого гранул экзоцитозом наружу сл-но медиатор в синаптической щели сл-но связан с рецепторами мембраны сл-но возбуждение мембраны дендрита.

2 сипонсов: химический, электрический

Медиаторы разных типов:

Ацетилхонин - самый распространенный проницаемость мембраны- возбуждающиймедиатор.

Постеин мембрана соединительный фермент ацетилхоминэстераза- расщепляет избыток ацетилхолина в син. щели.

Недостаток сл-но непрерывный импульс сл-но судороги.

Тормозные- изомасляная кислота- стабилизирует действие(каналы не открываютя).

Один нейрон сл-но различные медиаторы и есть рецепторы к различным медаторам.

Но иногда различие по медиаторам типы м. кл.

Холинэргические сл-но ацетилхолин

Адренэргические сл-но норадренолин

Морфологическая классификация. (гл.пр.- число отростков

1) Униполярные

2) Биполярные

3) Мультиполярные

Функциональная классификацияз(Зависит от строени м. окончаний кл)

1) Рецепторные нейроны

2) Эферентные

3) Ассоциативны

1) Рецепторные (аффферентные или чувствительные) им. специализир. дендрит окончание. Их дендрит специализир. для восприятия каких-то стимулов (внешних или внутренних).

В зависимости от воспринимаемого стимула:

Экстрорецепторы(воспринимают возбуждение из внешней среды)

Интрарецепторы (посылают информацию о состоянии внутренних органов)(из внутренней среды)

Проприорецепторы (от опорно- двигательног аппарата)

Механорецепторы

Барорецепторы,болевые, терморецепторы.

2)Эферентные (двигательные), специализированный аксон.Окончание аксона приходится на какой либо рабочий орган, который отвечает на возбуждение. В большинстве случаев мишень- мышечные клетки. Иногда некоторые акреторные клетки также являютя мишенью.

1-е наз.моторные окончания. В месте контакта мышечные волокна не содержат базальной мембраны- нейромышечный синапс.

3) Ассоциативные. Их нервные окончания наз.концевые аппараты кл. Образуют межнейральные синапсы.

Нейролгия. Это клетки нервной ткани, которые выполняют опорную, защитную, трофическую, секреторную и разграничительную функции. Клетки очень разнообразны.

Микролгия- макрофа нервной ткани. имеет моноцитарное происхождение. В норме ф - уничтожение устаревших нейронов.

Макролгия- разные клетки:

Эпендимоциты, клетки, выстилающие полость спинно- мозгового канала и желудочков головного мозга. Это пограничная ткань, образует однослойный эпителий.

Длинные отростки уходят в толщину мозга разграничивается и опорная ф-я, секреторная.

По происхождению из нейрального зачатка. Эпендима учавствует в образовании темато- нейкворного барьера между кр.и яйквором) Этот барьер обладает очень стремит. избирательностью.

Определенные в-ва пропускают только в одну сторону. При менингите антибиотик сл-но в ликвор.

Олипондроциты.шванновские клетки, образуют мелиновую оболочку нижних волокон. 1) леммоциты

2) собелиты 9 окруж. тело н.клеткуи - защитная и трофическая ф-ии

Астроциты- отросчатые клетки, похожи на нейроны. Заполняют пространство между нейронамит. Отростками и телом плотно охватывают капиляр сл-но и возле каждого сосудика- футляр. Др. отростки тянутся к нейронам. Путем трансцитоза передают питательные в-ва, т.о.учавствуют в трофике. Это тематоэнцефалический баорьер (кровь и н. тк).

Один из самых строгих барьеров. Большинство нейронов созревают после рождения сл-но медиаторы воспринимают иммунокомпетентными клетками как антигены. Чтобы уберечь нейроны от аутоимунного ответа, нейроны нигде не соприкасаются с кровью. В состоянии этого барьера входит:

1) эндотемий

Базальная мембрана капиляров

Астроцитарная (астроциты)

Иногда еще имеется иванновская клетка

3) - переваскулярной пограничной мембраны

Нервное волокно-это отросток нейрона связанный с клетками нейроглии. Сами отростки нейронов называются осевыми цилиндрами. Клетки которые покрыты аподедроциты называются еще леммациты. Лемоцит может контактировать с оевым цилиндром двумя разными способами сл-но миелиновые (мякатные) и безмиелиновые (без мякотные) мышечные волокна. Осевые цилиндры погружаются в леммоцит сдвоенные мембраны леммоцита на которые пдвешен осевой цилиндр мезаксон.

Миелиновое образование в том случае, если леммцит (шваннвоская клетка) многократно обкрутится вокруг осевого цилиндра. Цитоплазма на поверхности с ней v органелл. Много слоев плазм мембраны. При окраске серебром или осмием следовательно в черную окраску - это и называется миелином. Миелиновые валокна главным образом в соматическом отделе нервной системы; без миелиные для вегетативной нервной системы. Один лиммоцит может ослуживать одновременно несколько осевых цилиндров сл-но валокна кабельного типа. два вида рецепторов свбодные и несвободные.

НЕРВНАЯ СИСТЕМА.

Она объединяе механизм в единое целое и обеспечивает связь с внешней средой выполняет регуляторную функцию.

В основе синтетическая ней ронная теория:

1. Нервная система состоит из отдельных клеток нейронов сл-но стуктурная единица нервной системы нейрон.

2. Нейтоны между собой соединяются только специализированными контактами - синапсами.

3. Как фунциональная единица нейрон находится в состоянии либо возбуждения, либо покоя.

4. Есть два типа синапсов: возбуждающие и тормозные.

Основой деятельности морфологической нервной системы является рефлекторная дуга. Это цепочка нейронов, по которой импульс поступает от рецептора к исполнительному органу. рефлекторные дуги имеют разные особенности вы разных отделах нервной системы.

В сом. и вегетативных отделах рефлекторные дуги имеют свои особенности. Спинномозговые чувствительные нейроны.

Дендриты на пероферии нервных оканчаний. Аксоны заходят в ЦНС.

Дав типа нейронов мелкие темные и крупные свтлые. Чувствительный нейрон следует в спиной мозг следует передача возбуждения на мотонейрон (передни рога ядра) тело их ЦНС, а аксон следует к мышечной клетке формируя моторную бляшку.

Вегитативная нервная дуга устроена сложнее. Чувствительный отдел такойже. в вегитативных ядрах (боковые рога) спинного мозма происходит переключение на преганглионарный нейрон, его аксон тянется до вегитативного гангиля, где происходит переключение на постганглионарный нейрон, который зканчивается на рабочем органе.

Симпатическая (работа) и паросимпатическая (отдых) НС.

Преганглионарные - не длиные постганглионарные длинные симпатической НС. Интрамуральные или интраорганые ганглии- в стенке или около стенок нервного органа.

Отличаются тем, что в их состав входят три различные типа клеток - клетки Догеля:

1. Чувствительные нейроны

2. двигательные

3. ассоциативные

Преганглионарные длинные, постганглионарные короткие - парасимпатические.

Метасимпатическая нервная система условная автономность независимо от ЦНС. Узлы отличаются тем, чтомедиаторную роль могут выполнять различные биологически активные вещества.

Нервные ганглиевые узлы позваляют осуществлять работу рефлекторных дуг.

Профессор Суворова Г.Н.

Мышечные ткани.

Представляют собой группу тканей, которые осуществляют двигательные функции организма:

1) сократительные процессы в полых внутренних органах и сосудах

2) перемещение частей тела относительно друг друга

3) поддержание позы

4) перемещение организма в пространстве.

Мышечные ткани имеют следующие морфофункциональные характеристики:

1) Их структурные элементы имеют удлиненную форму.

2) Сократимые структуры (миофиламенты и миофибриллы) располагаются продольно.

3) Для мышечного сокращения необходимо большое количество энергии, поэтому в них:

Содержится большое число митохондрий

Имеются трофические включения

Может присутствовать железосодержащий белок миоглобин

Хорошо развиты структуры, в которых депонируются ионы Са ++

Мышечная ткань подразделяется на две основные группы

1) гладкую (неисчерченную)

2) Поперечнополосатую (исчерченную)

Гладкая мышечная ткань: имеет мезенхимное происхождение.

Кроме того, выделяют группу миоидных клеток, к ним относятся

Миоидные клетки, имеющие нейральное происхождение (образует мышцы радужки)

Миоидные клетки, имеющие эпидермальное происхождение (миоэпителиальные клетки потовых, слюнных, слезных и молочных желез)

Поперечнополосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей:

Скелетная – из миотомов сомитов

Сердечная – из висцерального листка спланхнотома.

Скелетная мышечная ткань

Составляет около 35-40% массы тела человека. В качестве основного компонента входит в состав скелетных мышц, кроме того, образует мышечную основу языка, входит в состав мышечной оболочки пищевода и т.д.

Развитие скелетных мышц . Источник развития – клетки миотомов сомитьов мезодермы, детерминированные в направлении миогенеза. Стадии:

Миобласты

Мышечные трубочки

Дефинитивная форма миогенеза – мышечное волокно.

Строение скелетной мышечной ткани.

Структурно-функциональной единицей скелетной мышечной ткани является мышечное волокно. Оно представляет собой вытянутое цилиндрическое образование с заостренными концами, диаметром от 10 до 100 мкм, вариабельной длины (до 10-30 см.).

Мышечное волокно является комплексным (клеточно-симпластическим) образованием, которое состоит их двух основных компонентов

1. миосимпласта

2. миосателлитоцитов.

Снаружи мышечное волокно покрыто базальной мембраной, которая вместе с плазмолеммой миосимпласта образует так называемую сарколемму.

Миосимпласт является основным компонентом мышечного волокна как по объему, так и по выполняемой функции. Миосимпласт является гигантской надклеточной структурой, которая образуется путем слияния огромного числа миобластов в эмбриогенезе. На периферии миосимпласта располагается от нескольких сотен до нескольких тысяч ядер. Вблизи ядер локализуются фрагменты пластинчатого комплекса, ЭПС, единичные митохондрии.


Центральная часть миосимпласта заполнена саркоплазмой. Саркоплазма содержит все органеллы общего значения, а также специализированные аппараты. К ним относятся:

Сократительный

Аппарат передачи возбуждения с сарколеммы

на сократительный аппарат.

Энергетический

Опорный

Сократительный аппарат мышечного волокна представлен миофибриллами.

Миофибриллы имеют вид нитей (длина мышечного волокна) диаметром 1-2 мкм. Они обладают поперечной исчерченностью, обусловленной чередованием различно преломляющих поляризованный свет участков (дисков) – изотропных (светлых) и анизотропных (темных). Причем миофибриллы располагаются в мышечном волокне с такой степенью упорядоченности, что светлые и темные диски соседних миофибрилл точно совпадают. Это и обусловливает исчерченность всего волокна.

Темные и светлые диски в свою очередь состоят из толстых и тонких нитей, которые называются миофиламентами.

Посередине светлого диска, поперечно тонким миофиламентам проходит темная полоска – телофрагма, или Z-линия.

Участок миофибриллы, расположенный между двумя телофрагмами называют саркомером.

Саркомер считается структурно-функциональной единицей миофибриллы - он включает в себя А-диск и расположенные по обе стороны от него две половины I-диска.

Толстые нити (миофиламенты) образованы упорядоченно упакованными молекулами фибриллярного белка миозина. Каждая толстая нить состоит из 300-400 молекул миозина.

Тонкие нити содержат сократимый белок актин и два регуляторных белка: тропонин и тропомиозин.

Механизм мышечного сокращения описывается теорией скользящих нитей, которая была предложена Хью Хаксли.

В покое, при очень низкой концентрации ионов Са ++ в миофибрилле расслабленного волокна толстые и тонкие нити не соприкасаются. Толстые и тонкие филаменты беспрепятственно скользят относительно друг друга, в результате мышечные волокна не сопротивляются пассивному растяжению. Такое состояние свойственно мышце-разгибателю при сокращении соответствующего сгибателя.

Мышечное сокращение вызывается резким повышением концентрации ионов Са ++ и состоит из нескольких этапов:

Ионы Са ++ связыватся с молекулой тропонина, которая смещается, открывая на тонких нитях участки связывания миозина.

Головка миозина прикрепляется к миозин-связывающим участкам тонкой нити.

Головка миозина изменяет конформацию и совершает гребковое движение, продвигающее тонкую нить к центру саркомера.

Головка миозина связывается с молекулой АТФ, что приводит к отделению миозина от актина.

Саркотубулярная система – обеспечивает накопление ионов кальция и является аппаратом передачи возбуждения. Необходима для того волна деполяризации, проходящая по плазмолемме привела к эффективному сокращению миофибрилл. Она состоит из саркоплазматической сети и Т-трубочек.

Саркоплазматическая сеть представляет собой видоизмененую гладкую эндоплазматическую сеть и состоит из системы полостей и канальцев, которая в виде муфты окружает каждую миофибриллу. На границе А- и I-дисков трубочки сливаются, образуя пары плоских терминальных цистерн. Саркоплазматическая сеть выполняет функции депонирования и выделения ионов кальция.

Волна деполяризации, распространяемая по плазмолемме доходит вначале до Т-трубочек. Между стенкой Т-трубочки и терминальной цистерны имеются специализированные контакты, через которые волна деполяризации доходит до мембраны терминальных цистерн, после чего высвобождаются ионы кальция.

Опорный аппарат мышечного волокна представлен элементами цитоскелета, которые обеспечивают упорядоченное расположение миофиламентов и миофибрилл. К ним относятся:

Телофрагма (Z-линия) – область прикрепления тонких миофиламентов двух соседних саркомеров.

Мезофрагма (М-линия) – плотная линия, расположенная в центре А-диска, к ней прикрепляются толстые филаменты.

Кроме того, в составе мышечного волокна имеются белки, стабилизирующие его структуру, например:

Дистрофин – одним концом прикрепляется к актиновым филаментам, а другим – к комплеку гликопротеидов, которые проникают в сарколемму.

Титин – эластический белок, который тянется от М- к Z-линии, препятствует перерастяжению мышцы.

Кроме миосимпласта в состав мышечных волокон входят миосателлитоциты. Это мелкие клетки, которые располагаются между плазмолеммой и базальной мембраной, представляют собой камбиальные элементы скелетной мышечной ткани. Они активизируются при повреждении мышечных волокон и обеспечивают их репаративную регенерацию.

Различают три основных типа волокон:

Тип I (красные)

Тип IIВ (белые)

Тип IIА (промежуточные)

Волокна I типа – красные мышечные волокна, характеризуются высоким содержанием в цитоплазме миоглобина, который и придает им красный цвет, большим числом саркосом, высокой активностью окислительных ферментов(СДГ), пребладанием аэробных процессов.Эти волокна обладают способностью медленного,но длительного тонического сокращения и малой утомляемостью.

Волокна IIВ типа – белые - гликолитические, характеризуютс относительно низким содержанием миоглобина, но высоким –гликогена. Имеют больший диаметр, быстрые, тетанические, с большой силой сокращения, быстро утомляются.

Волокна IIА типа – промежуточные, быстрые, устойчивые к утомлению, окислительно-гликолитические.

Мышца как орган – состоит из мышечных волокон, связанных воедино системой соединительной ткани, сосудов и нервов.

Каждое волокно окружено прослойкой рыхлой соединительной ткани, которая содержит кровеносные и лимфатические капилляры, обеспечивающие трофику волокна. Коллагеновые и ретикулярные волокна эндомизия вплетаются в базальную мембрану волокон.

Перимизий – окружает пучки мышечных волокон. В нем содержатся более крупные сосуды

Эпимизий – фасция. Тонкий соединительно-тканный чехол из плотной соединительной ткани, окружающий всю мышцу.

Мышца человека - это орган тела (мягкая ткань), состоящий из мышечных волокон, способных сокращаться под воздействием нервных импульсов и обеспечивающий основные функции тела человека: движение, дыхание, питание, сопротивление нагрузкам и т.п.

Когда мышца сокращается (под воздействием нервных импульсов), в ней различают активно сокращающуюся часть – брюшко и пассивную часть, при помощи которой она прикрепляется к костям - сухожилие. Если рассматривать в общем и целом, то скелетная мышца – это сложная структура, состоящая из поперечно-полосатой мышечной ткани, различных видов соединительной (сухожилие) и нервной (нервы мышц) тканей, из эндотелия и гладких мышечных волокон (сосуды).

Структурной единицей скелетной мышцы является мышечное волокно. Оно является удлиненной, цилиндрической клеткой с множественными ядрами, имеющей ширину 10-100 мкм и длину от нескольких миллиметров до 30 см.

На поперечном сечении продольноволокнистой мышцы видно, что она состоит из первичных пучков, содержащих 20 - 60 волокон. Каждый пучок отделен соединительно-тканной оболочкой - перимизиумом, а каждое волокно - эндомизиумом. В разных мышцах насчитывается от нескольких сот до нескольких сот тысяч волокон с диаметром от 20 до 100 мкм и длиной до 12 - 16 см.

Отдельное волокно покрыто истинной клеточной оболочкой - сарколеммой. Сразу под ней, примерно через каждые 5 мкм по длине, расположены ядра. Волокна имеют характерную поперечную исчерченность, которая обусловлена чередованием оптически более и менее плотных участков.

Волокно образовано множеством (1000 - 2000 и более) плотно упакованных миофибрилл (диаметр 0,5 - 2 мкм), тянущихся из конца в конец. Между миофибриллами рядами расположены митохондрии, где происходят процессы окислительного фосфорилирования, необходимые для снабжения мышцы энергией.


Структурно-функциональной сократительной единицей миофибриллы является саркомер - повторяющийся участок фибриллы, ограниченный двумя полосками.

Саркомеры в миофибрилле отделены друг от друга Z -пластинками, которые содержат белок бета-актинин. В обоих направлениях от Z -пластинки отходят тонкие актиновые филламенты. В промежутках между ними располагаются более толстые миозиновые филламенты.

Актиновый филламент внешне напоминает две нитки бус, закрученные в двойную спираль, где каждая бусина – молекула белка актина. В углублениях актиновых спиралей на равном расстоянии друг от друга лежат молекулы белка тропонина, соединенные с нитевидными молекулами белка тропомиозина

Миозиновые филламенты образованы повторяющимися молекулами белка миозина. Каждая молекула миозина имеет головку и хвост. Головка миозина может связываться с молекулой актина, образуя так называемый поперечный мостик.

Клеточная мембрана мышечного волокна образует инвагинации (поперечные трубочки), которые выполняют функцию проведения возбуждения к мембране саркоплазматического ретикулума. Саркоплазматичекий ретикулум (продольные трубочки) представляет собой внутриклеточную сеть замкнутых трубочек и выполняет функцию депонирования ионов Са++.

Химический состав мышечной ткани. В мышечной ткани человека содержится 72–80% воды и 20–28% сухого остатка от массы мышцы. Вода входит в состав большинства клеточных структур и служит растворителем для многих веществ. Большую часть сухого остатка образуют белки и другие органические соединения.

В 1 г поперечнополосатой мышечной ткани содержится около 100 мг сократительных белков, главным образом миозина и актина, образуюших актиномиозиновый комплекс (филамент).

В состав сухого остатка мышц наряду с белками входят и другие вещества, среди которых выделяют азотсодержащие, безазотистые экстративные вещества и минеральные вещества. Из липидов в мышечной ткани обнаруживаются триглицериды в виде капелек жира, а также холестерин.

Наши продукты:

Как избавиться
от боли в спине, мышцах и суставах

Мышечными тканями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве всего организма в целом или его частей (пример – скелетная мускулатура) и движение органов внутри организма (пример – сердце, язык, кишечник).

Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

Общая характеристика и классификация

Основные морфологические признаки элементов мышечных тканей - удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы - миофиламенты обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков - актина и миозина при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией. Запас источников энергии образуют гликоген и липиды. Миоглобин - это белок-пигмент (наподобие гемоглобина), обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (и поступление кислорода при этом резко падает).

В основу классификации мышечных тканей положены два принципа - морфофункциональный и гистогенетический. В соответствии с морфофункциональным принципом, в зависимости от структуры органелл сокращения, мышечные ткани подразделяют на две подгруппы: исчерченные мышечные ткани и гладкие мышечные ткани.

Поперечнополосатые (исчерченные) мышечные ткани. В цитоплазме их элементов миозиновые филаменты постоянно полимеризованы, образуют с актиновыми нитями постоянно существующие миофибриллы. Последние организованы в характерные комплексы - саркомеры. В соседних миофибриллах структурные субъединицы саркомеров расположены на одинаковом уровне и создают поперечную исчерченность. Исчерченные мышечные ткани сокращаются быстрее, чем гладкие.

Гладкие (неисчерченные) мышечные ткани. Эти ткани характеризуются тем, что вне сокращения миозиновые филаменты деполимеризованы. В присутствии ионов кальция они полимеризуются и вступают во взаимодействие с филаментами актина. Образующиеся при этом миофибриллы не имеют поперечной исчерченности: при специальных окрасках они представлены равномерно окрашенными по всей длине нитями.

В соответствии с гистогенетическим принципом в зависимости от источников развития (т.е. эмбриональных зачатков) мышечные ткани подразделяются на 5 типов:

  1. мезенхимные (из десмального зачатка в составе мезенхимы)
  2. эпидермальные (из кожной эктодермы и из прехордальной пластинки)
  3. нейральные (из нервной трубки)
  4. целомические (из миоэпикардиальной пластинки висцерального листка спланхнотома)
  5. соматические (миотомные)

Первые три типа относятся к подгруппе гладких мышечных тканей, четвертый и пятый - к подгруппе поперечнополосатых.

Поперечнополосатые мышечные ткани

Имеется две основные разновидности поперечнополосатых (исчерченных) тканей - скелетная мышечная ткань и сердечная мышечная ткань.

Скелетная мышечная ткань

Гистогенез

Источником развития элементов скелетной (соматической) поперечнополосатой мышечной ткани являются клетки миотомов - миобласты . Одни из них дифференцируются на месте и участвуют в образовании так называемых аутохтонных мышц. Другие клетки мигрируют из миотомов в мезенхиму. Они уже детерминированы, хотя внешне не отличаются от других клеток мезенхимы. Их дифференцировка продолжается в местах закладки других мышц тела.

В ходе дифференцировки возникают две клеточные линии. Клетки одной из линий сливаются, образуя удлиненные симпласты - мышечные трубочки (миотубы). В них происходит дифференцировка специальных органелл - миофибрилл. В это время в миотубах отмечается хорошо развитая гранулярная эндоплазматическая сеть. Миофибриллы сначала располагаются под плазмолеммой, а затем заполняют большую часть миотубы. Ядра, напротив, из центральных отделов смещаются к периферии. Клеточные центры и микротрубочки при этом полностью исчезают. Гранулярная эндоплазматическая сеть редуцируется в значительной степени. Такие дефинитивные структуры называют миосимпластами.

Клетки другой линии остаются самостоятельными и дифференцируются в миосателлитоциты (или миосателлиты). Эти клетки располагаются на поверхности миосимпластов.

Строение

Основной структурной единицей скелетной мышечной ткани является мышечное волокно, состоящее из миосимпласта и миосателлитоцитов, покрытых общей базальной мембраной.

Длина всего волокна может измеряться сантиметрами при толщине всего 50-100 мкм. Комплекс, состоящий из плазмолеммы миосимпласта и базальной мембраны, называют сарколеммой.

Миосимпласт имеет множество продолговатых ядер, расположенных непосредственно под сарколеммой. Их количество в одном симпласте может достигать нескольких десятков тысяч. У полюсов ядер располагаются органеллы общего значения - аппарат Гольджи и небольшие фрагменты гранулярной эндоплазматической сети. Миофибриллы заполняют основную часть миосимпласта и расположены продольно.

Саркомер - это структурная единица миофибриллы. Каждая миофибрилла имеет поперечные темные и светлые диски, имеющие неодинаковое лучепреломление (анизотропные A-диски и изотропные I-диски). Каждая миофибрилла окружена продольно расположенными и анастомозирующими между собой петлями агранулярной эндоплазматической сети - саркоплазматической сети, или саркоплазматического ретикулума. Соседние саркомеры имеют общую пограничную структуру - Z-линию (или телофрагму). Она построена в виде сети из белковых фибриллярных молекул, среди которых существенную роль играет альфа-актинин. С этой сетью связаны концы тонких, актиновых, филаментов. От соседних Z-линий актиновые филаменты направляются к центру саркомера, но не доходят до его середины. Филаменты актина объединены с Z-линией и нитями миозина фибриллярными нерастяжимыми молекулами небулина. Посередине темного диска саркомера располагается сеть, построенная из миомезина. Она образует в сечении М-линию, или мезофрагму. В узлах этой М-линии закреплены концы толстых, миозиновых филаментов. Другие их концы направляются в сторону Z-линий и располагаются между филаментами актина, но до самих Z-линий тоже не доходят. Вместе с тем эти концы фиксированы по отношению к Z-линиям растяжимыми гигантскими белковыми молекулами титина.

Молекулы миозина имеют длинный хвост и на его конце две головки. При повышении концентрации ионов кальция в области присоединения головок (в своеобразном шарнирном участке) молекула миозина изменяет свою конфигурацию. При этом (поскольку между миозиновыми филаментами расположены актиновые) головки миозина связываются с актином (при участии вспомогательных белков - тропомиозина и тропонина). Затем головка миозина наклоняется и тянет за собой актиновую молекулу в сторону М-линии. Z-линии сближаются, саркомер укорачивается.

Альфа-актининовые сети Z-линий соседних миофибрилл связаны друг с другом промежуточными филаментами. Они подходят к внутренней поверхности плазмолеммы и закрепляются в кортикальном слое цитоплазмы, так что саркомеры всех миофибрилл располагаются на одном уровне. Это и создает при наблюдении в микроскоп впечатление поперечной исчерченности всего волокна.

Источником ионов кальция служат цистерны агранулярной эндоплазматической сети. Они вытянуты вдоль миофибрилл около каждого саркомера и образуют саркоплазматическую сеть . Именно в ней аккумулируются ионы кальция, когда миосимпласт находится в расслабленном состоянии. На уровне Z-линий (у амфибии) или на границе А- и I-дисков (у млекопитающих) канальцы сети меняют направление и располагаются поперечно, образуя расширенные терминальные или (латеральные) L-цистерны .

С поверхности миосимпласта плазмолемма образует длинные трубочки, идущие поперечно в глубину клетки (Т-трубочки ) на уровне границ между темными и светлыми дисками. Когда клетка получает сигнал о начале сокращения, этот сигнал перемещается по плазмолемме в виде потенциала действия и распространяется отсюда на мембрану Т-трубочек. Поскольку эта мембрана сближена с мембранами саркоплазматической сети, состояние последних меняется, кальций освобождается из цистерн сети и взаимодействует с актино-миозиновыми комплексами (они сокращаются). Когда потенциал действия исчезает, кальций снова аккумулируется в цистернах саркоплазматического ретикулума и сокращение миофибрилл прекращается. Для развития усилия сокращения нужна энергия. Она освобождается за счет АТФ- АДФ-превращений. Роль АТФазы выполняет миозин. Источником АТФ служат главным образом митохондрии, поэтому они и располагаются непосредственно между миофибриллами.

Большую роль в деятельности миосимпластов играют включения миоглобина и гликогена. Гликоген служит источником энергии, необходимой не только для совершения мышечной работы, но и поддержания теплового баланса всего организма. Миоглобин связывает кислород, когда мышца расслаблена и через мелкие кровеносные сосуды свободно протекает кровь. Во время сокращения мышцы сосуды сдавливаются, а запасенный кислород освобождается из миоглобина и участвует в биохимических реакциях.

Миосателлитоциты - это малодифференцированные клетки, являющиеся источником регенерации мышечной ткани. Они прилежат к поверхности миосимпласта, так что их плазмолеммы соприкасаются. Миосателлитоциты одноядерны, их ядра овальной формы и мельче, чем в симпластах. Они обладают всеми органеллами общего значения (в том числе и клеточным центром).

Типы мышечных волокон . Разные мышцы (как органы) функционируют в неодинаковых биомеханических условиях. Поэтому и мышечные волокна в составе разных мышц обладают разной силой, скоростью и длительностью сокращения, а также утомляемостью. Ферменты в них обладают разной активностью и представлены в различных изомерных формах. Заметно различие в них содержания дыхательных ферментов - гликолитических и окислительных.

По соотношению миофибрилл, митохондрий и миоглобина различают белые, красные и промежуточные волокна. По функциональным особенностям мышечные волокна подразделяют на быстрые, медленные и промежуточные. Наиболее заметно мышечные волокна различаются особенностями молекулярной организации миозина. Среди различных его изоформ существуют две основных - «быстрая» и «медленная». При постановке гистохимических реакций их различают по АТФазной активности. С этими свойствами коррелирует и активность дыхательных ферментов. Обычно в быстрых волокнах преобладают гликолитические процессы, они более богаты гликогеном, в них меньше миоглобина, поэтому их называют также белыми. В медленных волокнах, напротив, выше активность окислительных ферментов, они богаче миоглобином, выглядят более красными.

Свойства мышечных волокон меняются при изменении нагрузок - спортивных, профессиональных, а также в экстремальных условиях (таких как невесомость). При возврате к обычной деятельности такие изменения обратимы. При некоторых заболеваниях (мышечные атрофии, дистрофии, последствия денервации) мышечные волокна с разными исходными свойствами изменяются неодинаково. Это позволяет уточнять диагноз, для чего исследуют биоптаты скелетных мышц.

Регенерация скелетной мышечной ткани

Ядра миосимпластов делиться не могут, так как у них отсутствуют клеточные центры. Камбиальными элементами служат миосателлитоциты . Пока организм растет, они делятся, а дочерние клетки встраиваются в концы симпластов. По окончании роста размножение миосателлитоцитов затухает. После повреждения мышечного волокна на некотором протяжении от места травмы оно разрушается и его фрагменты фагоцитируются макрофагами.

Восстановление любых тканей организма может осуществляется за счет двух механизмов: гипертрофии и гиперплазии. Под гипертрофией подразумевают компенсаторное увеличение объема самого симпласта, в т.ч. за счет увеличения количества миофибрилл. В симпласте активизируются гранулярная эндоплазматическая сеть и аппарат Гольджи. Происходит синтез веществ, необходимых для восстановления саркоплазмы и миофибрилл, а также сборка мембран, так что восстанавливается целостность плазмолеммы. Поврежденный конец миосимпласта при этом утолщается, образуя мышечную почку. Под гиперплазией понимают пролиферацию миосателлитоцитов. Сохранившиеся рядом с повреждением миосателлитоциты делятся. Одни из них мигрируют к мышечной почке и встраиваются в нее, другие сливаются (так же, как миобласты при гистогенезе) и образуют миотубы, которые затем входят в состав вновь образованных мышечных волокон или формируют новые волокна.

Скелетная мышца как орган

Передача усилий сокращения на скелет осуществляется посредством сухожилий или прикрепления мышц непосредственно к надкостнице. На конце каждого мышечного волокна плазмолемма образует глубокие узкие впячивания. В них со стороны сухожилия или надкостницы проникают тонкие коллагеновые волокна. Последние спирально оплетаются ретикулярными волокнами. Концы волокон направляются к базальной мембране, входят в нее, поворачивают назад и по выходе снова оплетают коллагеновые волокна соединительной ткани.

Между мышечными волокнами находятся тонкие прослойки рыхлой волокнистой - эндомизий . Коллагеновые волокна наружного листка базальной мембраны вплетаются в него, что способствует объединению усилий при сокращении миосимпластов. Более толстые прослойки рыхлой соединительной ткани окружают по нескольку мышечных волокон, образуя перимизий и разделяя мышцу на пучки. Несколько пучков объединяются в более крупные группы, разделенные более толстыми соединительнотканными прослойками. Соединительную ткань, окружающую поверхность мышцы, называют эпимизием .

Васкуляризация . Артерии вступают в мышцу и распространяются по прослойкам соединительной ткани, постепенно истончаясь. Ветви 5-6-го порядка образуют в перимизии артериолы. В эндомизии расположены капилляры. Они идут вдоль мышечных волокон, анастомозируя друг с другом. Венулы, вены и лимфатические сосуды проходят рядом с приносящими сосудами. Как обычно, рядом с сосудами много тканевых базофилов, принимающих участие в регуляции проницаемости сосудистой стенки.

Иннервация . В мышцах выявлены миелинизированные эфферентные (двигательные), афферентные (чувствительные), а также немиелинизированные вегетативные нервные волокна. Отросток нервной клетки, приносящий импульс от моторного нейрона спинного мозга, ветвится в перимизии. Каждая его ветвь проникает сквозь базальную мембрану, и у поверхности симпласта на плазмолемме образует терминали, участвуя в организации так называемой моторной бляшки, или нервно-мышечного соединения. При поступлении нервного импульса из терминали выделяется ацетилхолин - медиатор, который вызывает возбуждающий потенциал действия, распространяющееся отсюда по плазмолемме миосимпласта.

Итак, каждое мышечное волокно иннервируется самостоятельно и окружено сетью гемокапилляров, образуя комплекс, именуемый мионом . Группа же мышечных волокон, иннервируемых одним мотонейроном, называется нервно-мышечной единицей. Характерно, что мышечные волокна, принадлежащие к одной нервно-мышечной единице, лежат не рядом, а расположены мозаично среди волокон, относящихся к другим единицам.

Чувствительные нервные окончания располагаются не на рабочих мышечных волокнах, а связаны со специализированными мышечными волокнами в так называемых мышечных веретенах , которые расположены в перимизии. Волокна в таких чувствительных мышечных веретенах именуются интрафузальными волокнами, а обычные рабочие мышечные волокна – экстрафузальными.

Интрафузальные мышечные волокна веретен значительно тоньше рабочих. Существует два их вида - волокна с ядерной сумкой и волокна с ядерной цепочкой. Каждое мышечное волокно веретена спирально обвито терминалью чувствительного нервного волокна. В результате сокращения или расслабления рабочих мышечных волокон изменяется натяжение соединительнотканной капсулы веретена, соответственно изменяется тонус интрафузальных мышечных волокон. Вследствие этого возбуждаются чувствительные нервные окончания, обвивающие их, и в области терминалей возникают афферентные нервные импульсы. На каждом миосимпласте располагается также своя моторная бляшка. Поэтому интрафузальные мышечные волокна постоянно находятся в напряжении, подстраиваясь к длине мышечного брюшка в целом.

Сердечная мышечная ткань

Гистогенез и виды клеток. Источники развития сердечной поперечнополосатой мышечной ткани - симметричные участки висцерального листка спланхнотома в шейной части зародыша - так называемые миоэпикардиалъные пластинки. Из них дифференцируются также клетки мезотелия эпикарда. В ходе гистогенеза возникает 3 вида кардиомиоцитов:

  1. рабочие, или типичные, или же сократительные, кардиомиоциты,
  2. атипичные кардиомиоциты (сюда входят пейсмекерные, проводящие и переходные кардиомиоциты, а также
  3. секреторные кардиомиоциты.

Рабочие (сократительные ) кардиомиоциты образуют свои цепочки. Укорачиваясь, они обеспечивают силу сокращения всей сердечной мышцы. Рабочие кардиомиоциты способны передавать управляющие сигналы друг другу. Синусные (пейсмекерные) кардиомиоциты способны автоматически в определенном ритме сменять состояние сокращения на состояние расслабления. Они воспринимают управляющие сигналы от нервных волокон, в ответ на что изменяют ритм сократительной деятельности. Синусные (пейсмекерные) кардиомиоциты передают управляющие сигналы переходным кардиомиоцитам, а последние - проводящим. Проводящие кардиомиоциты образуют цепочки клеток, соединенных своими концами. Первая клетка в цепочке воспринимает управляющие сигналы от синусных кардиомиоцитов и передает их далее - другим проводящим кардиомиоцитам. Клетки, замыкающие цепочку, передают сигнал через переходные кардиомиоциты рабочим.

Секреторные кардиомиоциты выполняют особую функцию. Они вырабатывают гормон - натрийуретический фактор , участвующий в процессах регуляции мочеобразования и в некоторых других процессах.

Сократительные кардиомиоциты имеют удлиненную (100-150 мкм) форму, близкую к цилиндрической. Их концы соединяются друг с другом, так что цепочки клеток составляют так называемые функциональные волокна (толщиной до 20 мкм). В области контактов клеток образуются так называемые вставочные диски . Кардиомиоциты могут ветвиться и образуют трехмерную сеть. Их поверхности покрыты базальной мембраной, в которую снаружи вплетаются ретикулярные и коллагеновые волокна. Ядро кардиомиоцита (иногда их два) овальное и лежит в центральной части клетки. У полюсов ядра сосредоточены немногочисленные органеллы общего значения. Миофибриллы слабо обособлены друг от друга, могут расщепляться. Их строение аналогично строению миофибрилл миосимпласта скелетного мышечного волокна. От поверхности плазмолеммы в глубь кардиомиоцита направлены Т-трубочки, находящиеся на уровне Z-линии. Их мембраны сближены, контактируют с мембранами гладкой эндоплазматической (т.е. саркоплазматической) сети. Петли последней вытянуты вдоль поверхности миофибрилл и имеют латеральные утолщения (L-системы), формирующие вместе с Т-трубочками триады или диады. В цитоплазме имеются включения гликогена и липидов, особенно много включений миоглобина. Механизм сокращения кардиомиоцитов такой же, как у миосимпласта.

Кардиомиоциты соединяются друг с другом своими торцевыми концами. Здесь образуются так называемые вставочные диски: эти участки выглядят как тонкие пластинки при увеличении светового микроскопа . Фактически же концы кардиомиоцитов имеют неровную поверхность, поэтому выступы одной клетки входят во впадины другой. Поперечные участки выступов соседних клеток соединены друг с другом интердигитациями и десмосомами. К каждой десмосоме со стороны цитоплазмы подходит миофибрилла, закрепляющаяся концом в десмоплакиновом комплексе. Таким образом, при сокращении тяга одного кардиомиоцита передается другому. Боковые поверхности выступов кардиомиоцитов объединяются нексусами (или щелевыми соединениями). Это создает между ними метаболические связи и обеспечивает синхронность сокращений.

Возможности регенерации сердечной мышечной ткани. При длительной усиленной работе (например, в условиях постоянно повышенного артериального давления крови) происходит рабочая гипертрофия кардиомиоцитов. Стволовых клеток или клеток-предшественников в сердечной мышечной ткани не обнаружено, поэтому погибающие кардиомиоциты (в частности, при инфаркте миокарда) не восстанавливаются, а замещаются элементами соединительной ткани.

Гладкие мышечные ткани

По происхождению различают три группы гладких (или неисчерченных) мышечных тканей - мезенхимные, эпидермальные и нейральные.

Мышечная ткань мезенхимного происхождения

Гистогенез. Стволовые клетки и клетки-предшественники гладкой мышечной ткани, будучи уже детерминированными, мигрируют к местам закладки органов. Дифференцируясь, они синтезируют компоненты матрикса и коллаген базальной мембраны, а также эластин. У дефинитивных клеток (миоцитов) синтетическая способность снижена, но не исчезает полностью.

Структурно-функциональной единицей гладкой, или неисчерченной, мышечной ткани является гладко-мышечная клетка, или гладкий миоцит - это веретеновидная клетка длиной 20-500 мкм, шириной 5-8 мкм. Ядро клетки палочковидное, находится в ее центральной части. Когда миоцит сокращается, его ядро изгибается и даже закручивается. Органеллы общего значения, среди которых много митохондрий, сосредоточены в цитоплазме около полюсов ядра. Аппарат Гольджи и гранулярная эндо плазматическая сеть развиты слабо, что свидетельствует о малой активности синтетических функций. Рибосомы в большинстве своем расположены свободно.

Филаменты актина образуют в цитоплазме трехмерную сеть, вытянутую преимущественно продольно, точнее косо-продольно. Концы филаментов скреплены между собой и с плазмолеммой специальными сшивающими белками. Эти участки хорошо видны на электронных микрофотографиях как плотные тельца.

Миозиновые филаменты находятся в деполимеризованном состоянии. Мономеры миозина располагаются рядом с филаментами актина. Сигнал к сокращению обычно поступает по нервным волокнам. Медиатор, который выделяется из их терминалей, изменяет состояние плазмолеммы. Она образует впячивания - кавеолы, в которых концентрируются ионы кальция. Кавеолы отшнуровываются в сторону цитоплазмы в виде пузырьков (здесь из пузырьков освобождается кальций). Это влечет за собой как полимеризацию миозина, так и взаимодействие миозина с актином. Актиновые филаменты смещаются друг другу навстречу, плотные пятна сближаются, усилие передается на плазмолемму, и вся клетка укорачивается. Когда поступление сигналов со стороны нервной системы прекращается, ионы кальция эвакуируются из кавеол, миозин деполимеризуется и «миофибриллы» распадаются. Таким образом, актино-миозиновые комплексы существуют в гладких миоцитах только в период сокращения.

Гладкие миоциты располагаются без заметных межклеточных пространств и разделены базальной мембраной. На отдельных участках в ней образуются «окна», поэтому плазмолеммы соседних миоцитов сближаются. Здесь формируются нексусы, и между клетками возникают не только механические, но и метаболические связи. Поверх «чехликов» из базальной мембраны между миоцитами проходят эластические и ретикулярные волокна, объединяющие клетки в единый тканевой комплекс. Ретикулярные волокна проникают в щели на концах миоцитов, закрепляются там и передают усилие сокращения клетки всему их объединению.

Регенерация. Физиологическая регенерация гладкой мышечной ткани проявляется в условиях повышенных функциональных нагрузок. Наиболее отчетливо это видно в мышечной оболочке матки при беременности. Такая регенерация осуществляется не столько на тканевом, сколько на клеточном уровне: миоциты растут, в цитоплазме активизируются синтетические процессы, количество миофиламентов увеличивается (рабочая гипертрофия клеток). Не исключена, однако, и пролиферация клеток (т.е. гиперплазия).

В составе органов миоциты объединяются в пучки, между которыми располагаются тонкие прослойки соединительной ткани. В эти прослойки вплетаются ретикулярные и эластические волокна, окружающие миоциты. В прослойках проходят кровеносные сосуды и нервные волокна. Терминали последних оканчиваются не непосредственно на миоцитах, а между ними. Поэтому после поступления нервного импульса медиатор распространяется диффузно, возбуждая сразу многие клетки. Гладкая мышечная ткань мезенхимного происхождения представлена главным образом в стенках кровеносных сосудов и многих трубчатых внутренних органов, а также образует отдельные мелкие мышцы.

Гладкая мышечная ткань в составе конкретных органов имеет неодинаковые функциональные свойства. Это обусловлено тем, что на поверхности органов имеются разные рецепторы к конкретным биологически активным веществам. Поэтому и на многие лекарственные препараты их реакция неодинакова.

Гладкая мышечная ткань эпидермального происхождения

Миоэпителиальные клетки развиваются из эпидермального зачатка. Они встречаются в потовых, молочных, слюнных и слезных железах и имеют общих предшественников с железистыми секреторными клетками. Миоэпителиальные клетки непосредственно прилежат к собственно эпителиальным и имеют общую с ними базальную мембрану. При регенерации те и другие клетки восстанавливаются из общих малодифференцированных предшественников. Большинство миоэпителиальных клеток имеют звездчатую форму. Эти клетки нередко называют корзинчатыми: их отростки охватывают концевые отделы и мелкие протоки желез. В теле клетки располагаются ядро и органеллы общего значения, а в отростках - сократительный аппарат, организованный, как и в клетках мышечной ткани мезенхимного типа.

Гладкая мышечная ткань нейрального происхождения

Миоциты этой ткани развиваются из клеток нейрального зачатка в составе внутренней стенки глазного бокала. Тела этих клеток располагаются в эпителии задней поверхности радужки. Каждая из них имеет отросток, который направляется в толщу радужки и ложится параллельно ее поверхности. В отростке находится сократительный аппарат, организованный так же, как и во всех гладких миоцитах. В зависимости от направления отростков (перпендикулярно или параллельно краю зрачка) миоциты образуют две мышцы - суживающую и расширяющую зрачок.

Некоторые термины из практической медицины:

  • лейомиома -- доброкачественная опухоль, развивающаяся из гладкой мышечной ткани;
  • миогелез -- образование в мышцах болезненных очагов уплотнения, обусловленное переходом коллоидов миофибрилл в фазу геля, их гомогенизацией и восковидным некрозом; наблюдается, напр., при охлаждении тела, травмах;
  • миоциты Аничкова -- клетки с характерным расположением ядерного хроматина в виде зубчатой полоски, проявляющие фагоцитарную активность; встречаются в миокарде, напр. при миокардитах;

Самое обсуждаемое
7 форма владения световым мечом 7 форма владения световым мечом
Суставная гимнастика Амосова: комплекс упражнений, особенности и отзывы Амосов гимнастика 1000 движений Суставная гимнастика Амосова: комплекс упражнений, особенности и отзывы Амосов гимнастика 1000 движений
Бой на гитаре (12 видов) Бой на гитаре (12 видов)


top